The geometry of Ricci solitons
里奇孤子的几何结构
基本信息
- 批准号:1506220
- 负责人:
- 金额:$ 16.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Differential geometry is a branch of mathematics that studies the shapes of geometric objects, called manifolds. Differential geometry is the key mathematics in Einstein's theory of relativity, being used to describe the curvature of space-time in the presence of a body of mass and energy. As such, understanding the geometry and topology of manifolds is a fundamental problem in science. This project will focus on studying the behavior of evolution equations on manifolds. Geometric flows have proved to be very important in mathematics, in particular, Ricci flow has been very popular for its use in the resolution of some central problems, such as the long standing Poincare conjecture. Geometric flows can be used to study a fundamental question of geometry, which is to find canonical metrics on a given manifold. The Ricci flow proposes to do this in an analytic way, by flowing a given metric in time towards an improved, canonical one. This proposal will investigate the formation of singularities along the flow and will attempt to understand them in dimension four. There are possible applications of this study to theoretical physics, because Ricci flow can be seen as the renormalization group flow in string theory. Other related flows, like mean curvature flow, have further remarkable applications to other fields, such as in computer visualization, for eliminating noise, or in metallurgy, for heat treatment of metals. The outreach components of this project disseminate the results to general public and contribute to developing of young talent.Ricci flow was introduced by Hamilton in the early eighties, in a fundamental work devoted to understanding positively curved three dimensional manifolds. It became clear later that if one flows an arbitrary metric on a given manifold, the flow will generally develop singularities. One needs to understand these singularities in order to continue the flow, and to not loose any significant topological information about the space. The singularities of Ricci flow are modeled by Ricci solitons, which are fixed points of the flow, modulo diffeomorphisms and scalings. Perelman classified three dimensional shrinking Ricci solitons, and used this classification in the resolution of the Poincare conjecture. This has attracted much attention on the higher dimensional problem, and its applications. The goal of this project is to understand the structure and properties of Ricci solitons, in arbitrary dimension. This will lead to a better understanding of how large the space of Ricci solitons is. The study will focus in particular on complete four dimensional shrinking Ricci solitons. There are significant new challenges to this problem, in particular, there exist higher dimensional examples of Ricci solitons which are not positively curved. This principal investigator will attempt to understand the asymptotic geometry of complete four dimensional shrinking Ricci solitons, which is key information for their ultimate classification.
微分几何是数学的一个分支,它研究被称为流形的几何物体的形状。微分几何是爱因斯坦相对论中的关键数学,用于描述存在质量和能量的物体时的时空曲率。因此,理解流形的几何和拓扑是科学中的一个基本问题。本计画将著重于研究流形上演化方程的行为。几何流在数学中有着重要的地位,特别是Ricci流,它在解决一些中心问题上有着广泛的应用,如庞加莱猜想。几何流可以用来研究几何学的一个基本问题,即在给定流形上寻找正则度量。利玛窦流建议以分析的方式做到这一点,通过将给定的度量及时流向改进的规范度量。这个建议将调查形成的奇点沿着流动,并将试图了解他们在第四维。这项研究可能应用于理论物理,因为里奇流可以被看作是弦理论中的重整化群流。其他相关的流动,如平均曲率流动,在其他领域也有显著的应用,如在计算机可视化中,用于消除噪音,或在冶金学中,用于金属的热处理。该项目的推广部分向公众传播成果,并有助于培养青年人才。里奇流介绍了汉密尔顿在八十年代初,在一个基本的工作,致力于了解积极弯曲的三维流形。后来变得清楚的是,如果一个人在一个给定的流形上流动一个任意的度量,那么这个流动通常会发展出奇点。人们需要理解这些奇点,以便继续流动,并且不丢失关于空间的任何重要拓扑信息。Ricci流的奇异性由Ricci孤子来描述,它们是流的不动点、模同态和标度。Perelman对三维收缩Ricci孤子进行了分类,并将这种分类用于解决庞加莱猜想。这引起了人们对高维问题及其应用的广泛关注。本项目的目标是了解任意维的Ricci孤子的结构和性质。这将有助于我们更好地理解Ricci孤子的空间有多大。研究将特别集中在完整的四维收缩Ricci孤子。这一问题面临着新的挑战,特别是存在着非正弯曲的高维Ricci孤子的例子。本文主要研究完全四维收缩Ricci孤子的渐近几何,这是它们最终分类的关键信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovidiu Munteanu其他文献
A Minkowski type inequality for manifolds with positive spectrum
正谱流形的闵可夫斯基型不等式
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ovidiu Munteanu;Jiaping Wang - 通讯作者:
Jiaping Wang
The volume growth of complete gradient shrinking Ricci solitons
- DOI:
- 发表时间:
2009-04 - 期刊:
- 影响因子:0
- 作者:
Ovidiu Munteanu - 通讯作者:
Ovidiu Munteanu
Bottom spectrum of three-dimensional manifolds with scalar curvature lower bound
具有标量曲率下界的三维流形的底谱
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.7
- 作者:
Ovidiu Munteanu;Jiaping Wang - 通讯作者:
Jiaping Wang
Improved Beckner–Sobolev Inequalities on Kähler Manifolds
- DOI:
10.1007/s12220-019-00252-w - 发表时间:
2019-08-05 - 期刊:
- 影响因子:1.500
- 作者:
Fabrice Baudoin;Ovidiu Munteanu - 通讯作者:
Ovidiu Munteanu
A sharp estimate for the bottom of the spectrum of the Laplacian on Kähler manifolds
- DOI:
10.4310/jdg/1253804354 - 发表时间:
2007-03 - 期刊:
- 影响因子:2.5
- 作者:
Ovidiu Munteanu - 通讯作者:
Ovidiu Munteanu
Ovidiu Munteanu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovidiu Munteanu', 18)}}的其他基金
Analysis of Singularities of the Ricci Flow
里奇流的奇点分析
- 批准号:
1811845 - 财政年份:2018
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
Ricci curvature and the structure of manifolds
里奇曲率和流形结构
- 批准号:
1262140 - 财政年份:2012
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
Ricci curvature and the structure of manifolds
里奇曲率和流形结构
- 批准号:
1005484 - 财政年份:2010
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
相似国自然基金
Ricci孤立子上的几何与分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Ricci曲率下界流形的退化理论研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于半实物孪生特征空间Ricci流方法的柔性轴联系统健康评估研究
- 批准号:52375109
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
四维梯度Ricci孤立子的几何与拓扑
- 批准号:12301062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
离散Ricci流及其应用
- 批准号:12371056
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
离散Ricci流的研究
- 批准号:12301069
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Kähler-Ricci流的奇性分析
- 批准号:12371057
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
Ricci流的相关研究及其几何应用
- 批准号:12371059
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
Ricci流与Ricci孤立子的研究
- 批准号:LY23A010016
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
Ricci曲率非负的流形上多项式增长的调和函数
- 批准号:12271531
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Spaces with Ricci curvature bounded below
具有下界的里奇曲率空间
- 批准号:
2304698 - 财政年份:2023
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
Geometric analysis on graphs with Ricci curvature bounded from below
下界里奇曲率图的几何分析
- 批准号:
23K03103 - 财政年份:2023
- 资助金额:
$ 16.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DMS/NIGMS 1: Data-driven Ricci curvatures and spectral graph for machine learning and adaptive virtual screening
DMS/NIGMS 1:用于机器学习和自适应虚拟筛选的数据驱动的 Ricci 曲率和谱图
- 批准号:
2245903 - 财政年份:2023
- 资助金额:
$ 16.65万 - 项目类别:
Continuing Grant
Geometric analysis on spaces equipped with modifications of the Ricci curvature
带有修正里奇曲率的空间的几何分析
- 批准号:
22K13915 - 财政年份:2022
- 资助金额:
$ 16.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
- 批准号:
RGPAS-2021-00037 - 财政年份:2022
- 资助金额:
$ 16.65万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
- 批准号:
RGPIN-2021-03589 - 财政年份:2022
- 资助金额:
$ 16.65万 - 项目类别:
Discovery Grants Program - Individual
対称空間の観点からの Damek-Ricci 空間の一般化とその幾何構造の研究
对称空间视角下Damek-Ricci空间的推广及其几何结构研究
- 批准号:
22K13919 - 财政年份:2022
- 资助金额:
$ 16.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Taub-Bolt and Taub-NUT solutions and their behaviour under the Ricci flow
Taub-Bolt 和 Taub-NUT 解及其在 Ricci 流下的行为
- 批准号:
2747335 - 财政年份:2022
- 资助金额:
$ 16.65万 - 项目类别:
Studentship
Ricci Flows and Steady Ricci Solitons
里奇流和稳态里奇孤子
- 批准号:
2203310 - 财政年份:2022
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant














{{item.name}}会员




