Advanced Photonic Quantum Information Processing

先进光子量子信息处理

基本信息

  • 批准号:
    1520991
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

The nascent field of quantum information promises amazing and important capabilities, such as ultra-secure encryption, ultra-fast computation, and ultra-precise metrology. Photons are excellent carriers of quantum information, having been employed in numerous groundbreaking quantum information processing experiments. However, although many approaches to realizing a reliable periodic source of single photons - a critical resource for quantum applications - are being pursued, to date none operates at a level sufficient for realizing scalable optical quantum information processing. To date, nearly all experiments have been limited by inefficient photon-pair sources and detectors. Consequently, for example, a protocol needing five photons would be the equivalent of rolling five die and getting a "6" on each one, with the likelihood of only (1/6)(1/6)(1/6)(1/6)(1/6)= 0.00013. By incorporating time multiplexing of the photon source - making multiple attempts (~20) until we get a successful output, the success probability to create five photons is increased in principle to 88%. Large-scale quantum information processing also requires highly efficient detectors and high-fidelity photonic circuits. This project will solve these needs, combining advanced technologies for periodic single-/multi-photon sources, integrated photonic waveguide circuits, and highly efficient single-photon detectors. The net result will be a new capability for optical quantum information processing, greatly exceeding what has been possible until now.The realization of an efficient periodic source of indistinguishable photons is an enabling technology for many quantum information protocols, including one-way quantum computing, improved quantum cryptography, and quantum metrology. It would immediately enhance almost all existing quantum communication protocols, simultaneously increasing the possible rate while reducing the deleterious effects of multi-photon events. Spontaneous parametric downconversion is well known as a source of heralded single photons - detecting one of the daughter photons indicates the presence of the other one. However, the downconversion process itself is probabilistic, and therefore the resulting single photons are not on-demand; furthermore, using a brighter pump pulse to increase the likelihood of producing a pair automatically increases the unwanted probability of producing more than one pair. By employing temporal multiplexing, allowing photons created in any one of, e.g., 50 time slots to be mapped onto a single final time window, the net efficiency for single-photon creation can be greatly enhanced, while minimizing the likelihood of unwanted multi-photon events. The benefit becomes even greater when intentionally trying to create states with many photons: the methods developed here could enable rate enhancements over five orders of magnitude (and for one experiment up to 12 orders!). A similar improvement in optical circuitry (with regard to size and stability) is realized using custom-fabricated waveguides written into low-loss glass. One key feature of this work is the collaboration with Israeli researcher Yaron Silberberg, who will develop the required photonic waveguide circuitry, and work with the group on the final set of applications. The technology of 'integrating' a large number of waveguides and optics such as beamsplitters and phase shifters into a tiny glass substrate (approximately cross 5 centimeter area) will provide enhanced stability and interference between multiple photons. Thus, the unique bi-national connection in this proposal enables the development and implementation of sophisticated quantum photonic systems well beyond those that have been possible to date, until now limited to only a few photons. Combining the new source with optimized photonic waveguide circuitry, the project will then investigate several interesting photon-based quantum effects, including potentially scalable optical quantum logic and quantum walks.
新生的量子信息领域承诺提供令人惊叹和重要的能力,如超安全加密、超快计算和超精密计量。光子是量子信息的优秀载体,已被用于众多突破性的量子信息处理实验。然而,尽管人们正在寻求实现可靠的周期性单光子源--量子应用的关键资源--的许多方法,但到目前为止,没有一种方法的运行水平足以实现可扩展的光学量子信息处理。到目前为止,几乎所有的实验都受到效率低下的光子对光源和探测器的限制。因此,例如,一个需要五个光子的协议将等同于滚动五个骰子并在每个骰子上得到一个“6”,可能性仅为(1/6)(1/6)(1/6)(1/6)=0.00013。通过引入光子源的时分复用-进行多次尝试(~20)直到我们获得成功的输出,成功创建五个光子的概率原则上增加到88%。大规模的量子信息处理还需要高效的探测器和高保真的光子电路。该项目将结合周期性单/多光子源、集成光子波导电路和高效单光子探测器的先进技术来解决这些需求。最终的结果将是光学量子信息处理的新能力,远远超过目前的可能。实现高效的周期不可分辨光子源是许多量子信息协议的使能技术,包括单向量子计算、改进的量子密码学和量子计量学。它将立即增强几乎所有现有的量子通信协议,同时提高可能的速率,同时减少多光子事件的有害影响。自发的参数下转换是众所周知的预告单光子的来源--检测子光子中的一个表明另一个的存在。然而,下转换过程本身是概率的,因此产生的单光子不是按需产生的;此外,使用更亮的泵浦脉冲来增加产生对的可能性会自动增加产生多个对的不必要的概率。通过采用时间多路复用,允许在例如50个时隙中的任何一个中创建的光子被映射到单个最终时间窗口上,可以大大提高单光子创建的净效率,同时最小化不想要的多光子事件的可能性。当有意尝试创建具有多个光子的状态时,好处变得更大:这里开发的方法可以使速率提高超过5个数量级(对于一个实验,最高可达12个数量级!)。使用写入低损耗玻璃的定制波导,实现了光学电路的类似改进(关于尺寸和稳定性)。这项工作的一个关键特征是与以色列研究人员Yaron Silberberg的合作,Yaron Silberberg将开发所需的光子波导电路,并与该团队合作开发最后一套应用程序。将大量的波导和光学器件(如分束器和移相器)“集成”到一个微小的玻璃基板(大约横跨5厘米的面积)中的技术将提供增强的稳定性和多个光子之间的干涉。因此,这项提议中独特的两国联系使复杂的量子光子系统的开发和实施远远超出了迄今为止可能实现的系统,到目前为止仅限于少数几个光子。将新光源与优化的光子波导电路相结合,该项目将研究几种有趣的基于光子的量子效应,包括潜在的可扩展光学量子逻辑和量子行走。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Kwiat其他文献

Photons yield to peer pressure
光子屈服于同伴压力
  • DOI:
    10.1038/35091173
  • 发表时间:
    2001-08-30
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Paul Kwiat
  • 通讯作者:
    Paul Kwiat
Time multiplexing for high-efficiency single-photon generation
用于高效单光子生成的时间复用
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fumihiro Kaneda;Paul Kwiat
  • 通讯作者:
    Paul Kwiat
Photons yield to peer pressure
光子屈服于同伴压力
  • DOI:
    10.1038/35091173
  • 发表时间:
    2001-08-30
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Paul Kwiat
  • 通讯作者:
    Paul Kwiat
Towards satellite tests combining general relativity and quantum mechanics through quantum optical interferometry: progress on the deep space quantum link
  • DOI:
    10.1140/epjqt/s40507-025-00370-1
  • 发表时间:
    2025-06-20
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Makan Mohageg;Charis Anastopoulos;Olivia Brasher;Jason Gallicchio;Bei Lok Hu;Thomas Jennewein;Spencer Johnson;Shih-Yuin Lin;Alexander Ling;Alexander Lohrmann;Christoph Marquardt;Luca Mazzarella;Matthias Meister;Raymond Newell;Albert Roura;Giuseppe Vallone;Paolo Villoresi;Lisa Wörner;Paul Kwiat
  • 通讯作者:
    Paul Kwiat

Paul Kwiat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Kwiat', 18)}}的其他基金

QII-TAQS: Quantum-Enhanced Telescopy
QII-TAQS:量子增强望远镜
  • 批准号:
    1936321
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Enhancing Classical and Quantum Information Capacities with Imperfect Resources: Experimental Implementations and Theoretical Bounds
RAISE-TAQS:利用不完善的资源增强经典和量子信息能力:实验实现和理论界限
  • 批准号:
    1839177
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
INSPIRE: Exploring living system responses to quantum states of light
INSPIRE:探索生命系统对光量子态的反应
  • 批准号:
    1519407
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Advanced Tests and Applications of Quantum Nonlocality
量子非局域性的高级测试和应用
  • 批准号:
    1205870
  • 财政年份:
    2012
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Methods and Applications of Multi-Photon Quantum State Synthesis
多光子量子态合成方法及应用
  • 批准号:
    1212439
  • 财政年份:
    2012
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Foundations and Applications of Hyperentanglement
超纠缠的基础和应用
  • 批准号:
    0903865
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
ITR/SY: Foundations of Solid-State Quantum Information Processing
ITR/SY:固态量子信息处理的基础
  • 批准号:
    0121568
  • 财政年份:
    2001
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant

相似海外基金

Efficient Integrated Photonic Phase Shifters for Data/Telecom and Quantum Applications
适用于数据/电信和量子应用的高效集成光子移相器
  • 批准号:
    EP/Y00082X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
On-chip nuclear spin qubit platform based on individual erbium-167 ions in silicon photonic nanocavities for quantum repeaters
用于量子中继器的基于硅光子纳米腔中单个铒 167 离子的片上核自旋量子位平台
  • 批准号:
    23K26580
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
On-chip nuclear spin qubit platform based on individual erbium-167 ions in silicon photonic nanocavities for quantum repeaters
用于量子中继器的基于硅光子纳米腔中单个铒 167 离子的片上核自旋量子位平台
  • 批准号:
    23H01887
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAGER: Quantum Manufacturing: Scaling Quantum Photonic Circuits with Integrated Superconducting Detectors by 100×
EAGER:量子制造:使用集成超导探测器将量子光子电路扩展 100 倍
  • 批准号:
    2240501
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FuSe-TG: Co-Design of Chiral Quantum Photonic Devices and Circuits Integrated with 2D Material Heterostructures
FuSe-TG:手性量子光子器件和与二维材料异质结构集成的电路的协同设计
  • 批准号:
    2235276
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 2: Leveraging synthetic degrees of freedom for quantum state engineering in photonic chips
ExpandQISE:轨道 2:利用光子芯片中量子态工程的合成自由度
  • 批准号:
    2328993
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
  • 批准号:
    2238096
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
High-speed optical fibre switches for quantum photonic networks.
用于量子光子网络的高速光纤交换机。
  • 批准号:
    2888749
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Development of fundamental technologies for III-V semiconductor membrane photonic integrated circuits using quantum well intermixing
利用量子阱混合开发III-V族半导体膜光子集成电路基础技术
  • 批准号:
    23H00172
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
  • 批准号:
    2320265
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了