RAISE-TAQS: Enhancing Classical and Quantum Information Capacities with Imperfect Resources: Experimental Implementations and Theoretical Bounds

RAISE-TAQS:利用不完善的资源增强经典和量子信息能力:实验实现和理论界限

基本信息

  • 批准号:
    1839177
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Quantum channels are the means by which quantum data is transmitted between different locations; they provide the backbone for any quantum communication setup. Quantum channels have many counterintuitive properties with no classical analog. To address problems in quantum communication over realistic channels, we propose an interdisciplinary project that combines the expertise of five researchers in quantum resource theory, advanced photonic quantum information protocols, photonic nonlinear systems, and photonic quantum state characterization and precision optical measurements. Fundamental questions involving quantum entanglement, nonlocality, and causality, are being explored, while translating the theoretical aspects to actual experimental demonstrations. The project investigates the problem of realistic quantum and quantum-enhanced classical information transmission and how their enhanced properties may be applied to near-term computational devices, particularly relevant for engineering, concerned with realistic gains in practical systems. Student development is a primary educational goal of this project. Since the work is largely interdisciplinary, it will provide an opportunity for students from different programs to collaborate in a unique environment. The highly non-classical effects of superadditivity/superactivation and quantum-enhanced two-way communication are two main topical focuses of this project. In the first, two noisy quantum channels become vastly more powerful for communication when used in parallel, and in the second, two-way communication is achieved through the single use of a quantum channel. Experimental validations of these effects will be attained through a team effort involving theorists in math and physics working together with experimentalists from physics and engineering. The theoretical limitations of channel capacities and their behavior in low-dimensional systems will be analyzed, aiming to construct protocols suitable for deployment in tabletop and integrated photonic experiments. Complementing this effort, new experimental techniques are developed using hyper- and hybrid-entangled photons and cavity-enhanced nonlinear effects. Such experimental advances have the potential for powerful application in next-generation photonic quantum information processing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信道是量子数据在不同位置之间传输的手段;它们为任何量子通信设置提供了骨干。量子通道具有许多违反直觉的性质,没有经典类比。为了解决现实信道上的量子通信问题,我们提出了一个跨学科项目,结合五位研究人员在量子资源理论、先进光子量子信息协议、光子非线性系统、光子量子态表征和精密光学测量方面的专业知识。涉及量子纠缠、非定域性和因果关系的基本问题正在被探索,同时将理论方面转化为实际的实验演示。该项目研究了现实量子和量子增强经典信息传输的问题,以及它们的增强特性如何应用于近期的计算设备,特别是与工程相关的,与实际系统中的实际收益有关。学生发展是这个项目的主要教育目标。由于这项工作在很大程度上是跨学科的,它将为来自不同专业的学生提供一个在独特环境中合作的机会。超加性/超激活和量子增强双向通信的高度非经典效应是本项目的两个主要主题。在第一种方法中,两个有噪声的量子信道在并行使用时变得更加强大,在第二种方法中,通过单个量子信道实现双向通信。这些效应的实验验证将通过包括数学和物理理论家与物理和工程实验学家一起工作的团队努力来实现。分析了低维系统中信道容量的理论限制及其行为,旨在构建适合桌面和集成光子实验部署的协议。在此基础上,利用超纠缠光子和混合纠缠光子以及腔增强非线性效应开发了新的实验技术。这些实验进展在下一代光子量子信息处理中具有强大的应用潜力。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Broadband Quantum Memory in Atomic Barium Vapor with 95% Storage Efficiency
  • DOI:
    10.1364/cleo_fs.2023.fm2a.1
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kai Shinbrough;Benjamin D. Hunt;Sehyun Park;Kathleen Oolman;Tegan Loveridge;J. Eden;V. Lorenz
  • 通讯作者:
    Kai Shinbrough;Benjamin D. Hunt;Sehyun Park;Kathleen Oolman;Tegan Loveridge;J. Eden;V. Lorenz
High-efficiency fiber-to-chip interface for aluminum nitride quantum photonics
用于氮化铝量子光子学的高效光纤到芯片接口
  • DOI:
    10.1364/osac.391580
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Zhao, Mengdi;Kusolthossakul, Woraprach;Fang, Kejie
  • 通讯作者:
    Fang, Kejie
Generating transverse-mode entanglement in optical fiber
在光纤中产生横模纠缠
  • DOI:
    10.1117/12.2654965
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kim, Dong Beom;U'ren, Alfred B.;Garay-Palmett, Karina;Lorenz, Virginia O.
  • 通讯作者:
    Lorenz, Virginia O.
Multivariate trace inequalities, p-fidelity, and universal recovery beyond tracial settings
  • DOI:
    10.1063/5.0066653
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    M. Junge;Nicholas Laracuente
  • 通讯作者:
    M. Junge;Nicholas Laracuente
Quantum Teleportation and Super-Dense Coding in Operator Algebras
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Kwiat其他文献

Photons yield to peer pressure
光子屈服于同伴压力
  • DOI:
    10.1038/35091173
  • 发表时间:
    2001-08-30
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Paul Kwiat
  • 通讯作者:
    Paul Kwiat
Time multiplexing for high-efficiency single-photon generation
用于高效单光子生成的时间复用
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fumihiro Kaneda;Paul Kwiat
  • 通讯作者:
    Paul Kwiat
Photons yield to peer pressure
光子屈服于同伴压力
  • DOI:
    10.1038/35091173
  • 发表时间:
    2001-08-30
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Paul Kwiat
  • 通讯作者:
    Paul Kwiat
Towards satellite tests combining general relativity and quantum mechanics through quantum optical interferometry: progress on the deep space quantum link
  • DOI:
    10.1140/epjqt/s40507-025-00370-1
  • 发表时间:
    2025-06-20
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Makan Mohageg;Charis Anastopoulos;Olivia Brasher;Jason Gallicchio;Bei Lok Hu;Thomas Jennewein;Spencer Johnson;Shih-Yuin Lin;Alexander Ling;Alexander Lohrmann;Christoph Marquardt;Luca Mazzarella;Matthias Meister;Raymond Newell;Albert Roura;Giuseppe Vallone;Paolo Villoresi;Lisa Wörner;Paul Kwiat
  • 通讯作者:
    Paul Kwiat

Paul Kwiat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Kwiat', 18)}}的其他基金

QII-TAQS: Quantum-Enhanced Telescopy
QII-TAQS:量子增强望远镜
  • 批准号:
    1936321
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
INSPIRE: Exploring living system responses to quantum states of light
INSPIRE:探索生命系统对光量子态的反应
  • 批准号:
    1519407
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Advanced Photonic Quantum Information Processing
先进光子量子信息处理
  • 批准号:
    1520991
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Advanced Tests and Applications of Quantum Nonlocality
量子非局域性的高级测试和应用
  • 批准号:
    1205870
  • 财政年份:
    2012
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Methods and Applications of Multi-Photon Quantum State Synthesis
多光子量子态合成方法及应用
  • 批准号:
    1212439
  • 财政年份:
    2012
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Foundations and Applications of Hyperentanglement
超纠缠的基础和应用
  • 批准号:
    0903865
  • 财政年份:
    2009
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
ITR/SY: Foundations of Solid-State Quantum Information Processing
ITR/SY:固态量子信息处理的基础
  • 批准号:
    0121568
  • 财政年份:
    2001
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了