PFI:BIC Human-Centered Smart-Integration of Mobile Imaging and Sensing Tools with Machine Learning for Ubiquitous Quantification of Waterborne and Airborne Nanoparticles
PFI:BIC 以人为中心的移动成像和传感工具与机器学习的智能集成,可实现水性和空气性纳米粒子的普遍定量
基本信息
- 批准号:1533983
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) project focuses on the creation of a human-centered smart toolset and service system for on-site and ubiquitous quantification and automated charaterization/classification of nanosize objects. Nanoparticles are being used in more and more commercial and industrial products while their health and environmental implications are still under debate. The toxicity of nanomaterials not only varies among different materials, but is also highly dependent on the dose of exposure. Developing a sensitive method to detect the release and spatio-temporal distribution of nanoparticles in the environment as well as in daily lives is a high priority before their toxicity effects are fully understood via long-term toxicological studies. Despite this urgent need for widespread detection and quantification of nanoparticle distributions, current technologies are lacking appropriate features for ubiquitous and cost-effective mapping and quantification of nanoparticle contamination. This project aims to create a transformative and human-centered toolset for on-site and ubiquitous quantification and automated characterization of nanomaterials found in houses, workplaces and the environment based on the cost-effective integration of computational imaging and mobile sensing techniques with big data based dynamic machine learning algorithms. The central challenge in this project is to translate the bulky and expensive laboratory equipment currently used for nanoparticle quantification and characterization to field-portable, easy-to-use, cost-effective, and rapid analysis devices and smart service systems aiming to be massively used by consumers in their daily routines. To solve this challenge, highly sensitive optical imaging systems will be developed based on mass-produced Complementary Metal-Oxide Semiconductor (CMOS) sensor chips embedded in mobile phones with extraordinary signal to noise ratios (SNR) and large fields-of-view for high-throughput machine learning based automated nanoparticle analysis and classification. One approach this will take is to combine computational microscopy with self-assembled nanolenses around nanoparticles that significantly enhance imaging SNR and contrast. The aim of this approach is to enable automated detection and sizing of individual nanoparticles, mono-dispersed samples, and complex poly-dispersed mixtures, where the sample concentrations can span ~5 orders-of-magnitude and particle sizes can range from 40 nm to millimeter-scale, which provide unmatched performance metrics compared to existing nanoparticle sizing approaches. Another approach that will be implemented is the development of highly sensitive multi-modal (e.g. fluorescence plus dark-field) mobile phone based microscopy platforms for distributed nanoparticle imaging and sensing. Furthermore, in terms of big data analysis and machine learning tools, the techniques in this project can adaptively learn "semantic" similarities that can be used for more accurate data classification. These techniques are unlike existing techniques developed so far in the literature. The extant technologies are based only on signal similarities, which do not work well on multi-modality data. The smart and adaptive methods of this project are the first in the literature that come with confidence bounds, that is, they not only have the capability to accurately classify the information, but they also provide guarantees about the accuracy of this classification, which is quite important for self-learning smart service systems. Through these field-portable devices that are integrated with adaptive big data based decision analytics and quantification algorithms, spatio-temporal maps of nanoparticle concentrations and size distributions in various consumer samples will be created for public or personal monitoring (e.g., measurements of waterborne/airborne particles at home, workplace, or airborne particles along a freeway, etc.).The broader impacts of this transformative research include (1) The development of these nanoparticle sensing and quantification platforms and smart service systems will extend the boundaries of current optical metrology science, resulting in new advances in the fields of nanophotonics and optical microscopy (2) These devices will also be easy to translate into various biomedical, chemical and material science applications, significantly impacting the use and regulations of nanotechnologies in consumer market and related products. (3) This project would deliver a paradigm-shift by ubiquitous quantification and spatiotemporal mapping/monitoring of nanoparticle contamination and exposure even in non-laboratory settings, assisting in the revelation and better understanding of various cause-effect relationships at the consumer level that have remained unidentified so far due to the limitations of existing nano-imaging, detection and quantification technologies, also providing maps of potential health risks. (4) This project will also establish a complementary educational outreach program based in California.The lead institution and primary partners included in this cross-organizational interdisciplinary project are: Lead Academic Institution: University of California, Los Angeles, CA, School of Engineering, Electrical and Bioengineering Departments; Primary Industrial Partner: Holomic LLC (Small Business located in Los Angeles, CA); Other Industrial Partner: Google Inc. (Large Business located in Mountain View, CA).
这个创新伙伴关系:建设创新能力(PFI:BIC)项目的重点是创建一个以人为本的智能工具集和服务系统,用于现场和无处不在的纳米尺度物体的量化和自动化表征/分类。纳米粒子正在越来越多的商业和工业产品中使用,但它们对健康和环境的影响仍在争论中。纳米材料的毒性不仅因材料的不同而不同,而且高度依赖于暴露剂量。在通过长期毒理学研究充分了解纳米颗粒的毒性作用之前,开发一种灵敏的方法来检测纳米颗粒在环境和日常生活中的释放和时空分布是当务之急。尽管迫切需要对纳米颗粒的分布进行广泛的检测和定量,但目前的技术缺乏适当的特征,无法对纳米颗粒污染进行普遍和经济的测绘和定量。该项目旨在创建一个变革性的、以人为本的工具集,用于现场和无处不在的量化和自动表征在房屋、工作场所和环境中发现的纳米材料,该工具集基于计算成像和移动传感技术与基于大数据的动态机器学习算法的成本效益集成。该项目的核心挑战是将目前用于纳米颗粒定量和表征的笨重且昂贵的实验室设备转化为现场便携式,易于使用,具有成本效益的快速分析设备和智能服务系统,旨在为消费者在日常生活中大量使用。为了解决这一挑战,高灵敏度光学成像系统将基于大规模生产的互补金属氧化物半导体(CMOS)传感器芯片开发,该芯片嵌入手机中,具有非凡的信噪比(SNR)和大视场,可用于基于高通量机器学习的自动纳米颗粒分析和分类。其中一种方法是将计算机显微镜与纳米颗粒周围的自组装纳米透镜相结合,从而显著提高成像信噪比和对比度。该方法的目的是实现单个纳米颗粒、单分散样品和复杂多分散混合物的自动检测和上浆,其中样品浓度可以跨越~5个数量级,颗粒尺寸可以从40纳米到毫米尺度,与现有的纳米颗粒上浆方法相比,它提供了无与伦比的性能指标。将实施的另一种方法是开发高灵敏度的多模态(例如荧光加暗场)基于移动电话的显微镜平台,用于分布式纳米颗粒成像和传感。此外,在大数据分析和机器学习工具方面,本项目中的技术可以自适应地学习“语义”相似性,从而可以用于更准确的数据分类。这些技术与文献中迄今为止开发的现有技术不同。现有的技术仅基于信号相似度,不能很好地处理多模态数据。本课题的智能自适应方法是文献中第一个带有置信限的方法,即不仅具有对信息进行准确分类的能力,而且为分类的准确性提供了保证,这对于自学习智能服务系统来说是非常重要的。通过这些与自适应大数据决策分析和量化算法相结合的现场便携式设备,将创建各种消费者样本中纳米颗粒浓度和大小分布的时空地图,用于公共或个人监测(例如,测量家中、工作场所的水性/空气中颗粒,或高速公路上的空气中颗粒等)。这一变革性研究的广泛影响包括:(1)这些纳米粒子传感和定量平台和智能服务系统的发展将扩展当前光学计量科学的边界,导致纳米光子学和光学显微镜领域的新进展(2)这些设备也将很容易转化为各种生物医学,化学和材料科学应用。显著影响纳米技术在消费市场和相关产品中的使用和法规。(3)该项目将通过无所不在的量化和时空测绘/监测纳米颗粒污染和暴露(即使在非实验室环境中)来实现范式转变,协助揭示和更好地理解由于现有纳米成像、检测和量化技术的限制,迄今尚未确定的消费者层面的各种因果关系,并提供潜在健康风险的地图。(4)本项目还将在加州建立一个补充的教育外展计划。这个跨组织跨学科项目的牵头机构和主要合作伙伴包括:牵头学术机构:加州大学洛杉矶分校工程学院、电气和生物工程系;主要工业合作伙伴:Holomic LLC(位于加利福尼亚州洛杉矶的小型企业);其他工业合作伙伴:谷歌Inc.(位于加州山景城的大型企业)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aydogan Ozcan其他文献
Deep Learning-designed Diffractive Materials for Optical Computing and Computational Imaging
用于光学计算和计算成像的深度学习设计的衍射材料
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Aydogan Ozcan - 通讯作者:
Aydogan Ozcan
All-optical object classification through unknown phase diffusers using a single-pixel diffractive machine vision system
使用单像素衍射机器视觉系统通过未知相位漫射器进行全光学物体分类
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuhang Li;Bijie Bai;Yilin Luo;Ege Cetintas;Aydogan Ozcan - 通讯作者:
Aydogan Ozcan
Volumetric fluorescence microscopy using convolutional recurrent neural networks
使用卷积循环神经网络的体积荧光显微镜
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Luzhe Huang;Yilin Luo;Y. Rivenson;Aydogan Ozcan - 通讯作者:
Aydogan Ozcan
Automated HER2 Scoring in Breast Cancer Images Using Deep Learning and Pyramid Sampling
使用深度学习和金字塔采样对乳腺癌图像进行自动 HER2 评分
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Şahan Yoruç Selçuk;Xilin Yang;Bijie Bai;Yijie Zhang;Yuzhu Li;Musa Aydin;Aras Firat Unal;Aditya Gomatam;Zhen Guo;Morgan Angus Darrow;Goren Kolodney;Karine Atlan;T. Haran;N. Pillar;Aydogan Ozcan - 通讯作者:
Aydogan Ozcan
Super-Resolution Terahertz Imaging Through a Plasmonic Photoconductive Focal-Plane Array
通过等离子体光电导焦平面阵列进行超分辨率太赫兹成像
- DOI:
10.1364/cleo_si.2023.sm1n.2 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xurong Li;Deniz Mengu;Aydogan Ozcan;M. Jarrahi - 通讯作者:
M. Jarrahi
Aydogan Ozcan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aydogan Ozcan', 18)}}的其他基金
PFI-TT: A Rapid Multiplexed Diagnostic Tool for Serology of Tick-Borne Diseases
PFI-TT:蜱传疾病血清学快速多重诊断工具
- 批准号:
2345816 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Biopsy-free, label-free 3D virtual histology of intact skin
完整皮肤的免活检、免标记 3D 虚拟组织学
- 批准号:
2141157 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Deep learning-based serological test for point-of-care analysis of COVID-19 immunity with a paper-based multiplexed sensor
基于深度学习的血清学测试,使用纸基多重传感器对 COVID-19 免疫力进行即时分析
- 批准号:
2149551 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
I-Corps: Multiplexed paper-based test for rapid diagnosis of early-stage Lyme Disease
I-Corps:用于快速诊断早期莱姆病的多重纸质测试
- 批准号:
2055749 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
EAGER: High-throughput early detection and analysis of COVID-19 plaque formation using time-lapse coherent imaging and deep learning
EAGER:使用延时相干成像和深度学习对 COVID-19 斑块形成进行高通量早期检测和分析
- 批准号:
2034234 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
EAGER: All-Optical Information Processing Device for Seeing Through Diffusers at the Speed of Light
EAGER:以光速透过漫射器的全光学信息处理装置
- 批准号:
2054102 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NSF EAGER: DEEP LEARNING-BASED VIRTUAL HISTOLOGY STAINING OF TISSUE SAMPLES
NSF EAGER:基于深度学习的组织样本虚拟组织学染色
- 批准号:
1926371 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
EAGER: Mobile-phone based single molecule imaging of DNA and length quantification to analyze copy-number variations in genome
EAGER:基于手机的 DNA 单分子成像和长度定量分析基因组中的拷贝数变异
- 批准号:
1444240 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
EFRI-BioFlex: Cellphone-based Digital Immunoassay Platform for High-throughput Sensitive and Multiplexed Detection and Distributed Spatio-Temporal Analysis of Influenza
EFRI-BioFlex:基于手机的数字免疫分析平台,用于流感的高通量灵敏多重检测和分布式时空分析
- 批准号:
1332275 - 财政年份:2013
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: A new Telemedicine Platform using Incoherent Lensfree Cell Holography and Microscopy On a Chip
事业:使用非相干无透镜细胞全息术和芯片显微镜的新型远程医疗平台
- 批准号:
0954482 - 财政年份:2010
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
高效率、 多功能太赫兹非局域BIC超表面波前调制器
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
BIC/FTC/TAF治疗HIV感染者身体成份与代谢指标的变化趋势及影响因素的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
高性能单向面发射拓扑BIC光子晶体激光器的研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
硼烯与介质硅复合结构中 BIC 模式的形成机理及传
感应用
- 批准号:2024JJ5365
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
回音壁微腔中的光学BIC模式及应用
- 批准号:12334016
- 批准年份:2023
- 资助金额:239 万元
- 项目类别:重点项目
基于BIC的太赫兹复合超表面超快调制器研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
太赫兹准BIC超表面用于食用植物油中农药残留检测的研究
- 批准号:32371983
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于准BIC的全介质超表面的局域电场增强及其应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AIC, BIC及Cp准则在大维架构下的强相合性研究
- 批准号:11771073
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
基于LncRNA-BIC/miR-155调控P38MAPK蛋白磷酸化的温阳振衰颗粒治疗慢性心衰的研究
- 批准号:81704061
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
トロイダル双極子とBICの融合による近赤外光完全吸収シリコンメタ表面の実現
通过环形偶极子与BIC融合实现完全吸收近红外光的硅超表面
- 批准号:
24KJ1687 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for JSPS Fellows
TASK AREAS TWO (2), THREE (3), FOUR (4), AND SIX (6)FOR THE NATIONAL INSTITUTE OF HEALTH (NIH) BRAIN RESEARCH THROUGH ADVANCING INNOVATIVE NEUROTECHNOLOGIES (BRAIN) INITIATIVE CELL ATLAS NETWORK (BIC
任务领域二 (2)、三 (3)、四 (4) 和六 (6) 用于美国国立卫生研究院 (NIH) 通过推进创新神经技术 (大脑) 倡议细胞图谱网络 (BIC) 进行脑研究
- 批准号:
10931181 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Dynamique des populations de botryches (Botrychium spp) au parc national du Bic
比克国家公园的贵腐菌 (Botrychium spp) 种群动态
- 批准号:
564767-2021 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
University Undergraduate Student Research Awards
Prevention of Suicide in Veterans Through Brief Intervention and Contact (VA-BIC)
通过短暂干预和接触预防退伍军人自杀 (VA-BIC)
- 批准号:
10595500 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Prevention of Suicide in Veterans Through Brief Intervention and Contact (VA-BIC)
通过短暂干预和接触预防退伍军人自杀 (VA-BIC)
- 批准号:
10010028 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Prevention of Suicide in Veterans Through Brief Intervention and Contact (VA-BIC)
通过短暂干预和接触预防退伍军人自杀 (VA-BIC)
- 批准号:
10316148 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Electromagnetic-wave storage in a metamaterial by dynamic modulation of BIC states
通过动态调制 BIC 状态在超材料中存储电磁波
- 批准号:
20K05360 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ShEEP Request for VA BIC MRI Cryoprobe
ShEEP 请求 VA BIC MRI 冷冻探头
- 批准号:
9906314 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
UK BATTERY INDUSTRIALISATION CENTRE (UK BIC)
英国电池工业化中心(UK BIC)
- 批准号:
160065 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Centres