EAGER: High-throughput early detection and analysis of COVID-19 plaque formation using time-lapse coherent imaging and deep learning

EAGER:使用延时相干成像和深度学习对 COVID-19 斑块形成​​进行高通量早期检测和分析

基本信息

  • 批准号:
    2034234
  • 负责人:
  • 金额:
    $ 29.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Plaque assays are widely used for measuring the infectious concentration of viral samples and form a very important tool for vaccine development, especially for the evaluation of the performance of new vaccines at the exploratory and preclinical stages. This standard method is laborious and takes days to get the results, and is subject to human errors since it depends on manual plaque counting. Molecular techniques such as polymerase chain reaction (PCR or reverse transcription PCR) and western blots can be used to quantify the viral genome. However, none of these methods provide information about the infectivity of the virus and cannot measure plaque forming units. This proposal aims to create a computational sensor platform for accelerated testing of SARSCoV-2 viability and infectivity using deep learning-based plaque assays and achieve accurate and automated plaque forming unit (PFU) measurements within hours as opposed to days with standard plaque assays. The proposed computational imaging system will periodically capture coherent microscopic images of the cytopathogenic effects of viruses on cell cultures and analyze these time lapsed holographic images using deep neural networks (DNNs) for rapid detection of viral destruction of the cell monolayer. In addition to early and automated detection of plaque forming units, this unique platform will further make use of deep learning for high-throughput holographic image reconstruction of the assay volume to perform tile-scan imaging of the entire well plate within 5 min, corresponding to an imaging throughput of ~50 cm2/min. Powered by deep learning, this automated and cost-effective viral plaque monitoring platform can be transformative for a wide range of applications in microbiology and virology by significantly reducing the detection time without labeling or the need for an expert, or manual inspection. The project will also establish a complementary educational outreach program that will involve (1) public interviews and popular science articles in news media and internet; (2) undergraduate research opportunities in the PI’s laboratory involving minority students; and (3) graduate student training through organization of workshops, seminars and conferences. Furthermore, research projects, seminars and open house visits will serve undergrads and high school students (especially from minority groups) to interact with a cutting edge research environment, helping to increase their scientific curiosity and shaping their career goals in science and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
空斑试验广泛用于测量病毒样品的感染浓度,并形成疫苗开发的非常重要的工具,特别是用于评价新疫苗在探索和临床前阶段的性能。这种标准方法是费力的,需要几天时间才能得到结果,并且由于它依赖于人工噬菌斑计数,因此容易出现人为错误。分子技术如聚合酶链反应(PCR或逆转录PCR)和蛋白质印迹可用于定量病毒基因组。然而,这些方法都不能提供有关病毒感染性的信息,也不能测量空斑形成单位。该提案旨在创建一个计算传感器平台,用于使用基于深度学习的空斑试验加速SARSCoV-2活力和感染性的测试,并在数小时内实现准确和自动化的空斑形成单位(PFU)测量,而不是使用标准空斑试验的数天。所提出的计算成像系统将定期捕获病毒对细胞培养物的致细胞病变作用的相干显微图像,并使用深度神经网络(DNN)分析这些时间流逝的全息图像,以快速检测细胞单层的病毒破坏。除了早期和自动化检测噬菌斑形成单位外,这一独特的平台还将进一步利用深度学习进行分析体积的高通量全息图像重建,在5分钟内对整个孔板进行平铺扫描成像,对应的成像通量约为50 cm 2/min。这种自动化和成本有效的病毒空斑监测平台可以通过显著减少检测时间而无需标记或需要专家或人工检查来改变微生物学和病毒学中的广泛应用。 该项目还将建立一个补充的教育外展计划,其中包括:(1)新闻媒体和互联网上的公开采访和科普文章;(2)在PI实验室中涉及少数族裔学生的本科生研究机会;(3)通过组织研讨会、研讨会和会议对研究生进行培训。此外,研究项目,研讨会和开放参观将服务于本科生和高中生(特别是少数群体)与前沿研究环境互动,帮助提高他们的科学好奇心并塑造他们在科学和工程领域的职业目标。该奖项反映了NSF的法定使命,并通过利用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stain-free, rapid, and automated viral plaque assay using time-lapse holographic imaging and deep learning
使用延时全息成像和深度学习进行无染色、快速、自动化的病毒斑块测定
  • DOI:
    10.1364/fio.2023.fm6e.2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li, Yuzhu;Liu, Tairan;Koydemir, Hatice Ceylan;Zhang, Yijie;Yang, Ethan;Eryilmaz, Merve;Wang, Hongda;Li, Jingxi;Bai, Bijie;Ma, Guangdong
  • 通讯作者:
    Ma, Guangdong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aydogan Ozcan其他文献

Deep Learning-designed Diffractive Materials for Optical Computing and Computational Imaging
用于光学计算和计算成像的深度学习设计的衍射材料
All-optical object classification through unknown phase diffusers using a single-pixel diffractive machine vision system
使用单像素衍射机器视觉系统通过未知相位漫射器进行全光学物体分类
Volumetric fluorescence microscopy using convolutional recurrent neural networks
使用卷积循环神经网络的体积荧光显微镜
Automated HER2 Scoring in Breast Cancer Images Using Deep Learning and Pyramid Sampling
使用深度学习和金字塔采样对乳腺癌图像进行自动 HER2 评分
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Şahan Yoruç Selçuk;Xilin Yang;Bijie Bai;Yijie Zhang;Yuzhu Li;Musa Aydin;Aras Firat Unal;Aditya Gomatam;Zhen Guo;Morgan Angus Darrow;Goren Kolodney;Karine Atlan;T. Haran;N. Pillar;Aydogan Ozcan
  • 通讯作者:
    Aydogan Ozcan
Super-Resolution Terahertz Imaging Through a Plasmonic Photoconductive Focal-Plane Array
通过等离子体光电导焦平面阵列进行超分辨率太赫兹成像
  • DOI:
    10.1364/cleo_si.2023.sm1n.2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xurong Li;Deniz Mengu;Aydogan Ozcan;M. Jarrahi
  • 通讯作者:
    M. Jarrahi

Aydogan Ozcan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aydogan Ozcan', 18)}}的其他基金

PFI-TT: A Rapid Multiplexed Diagnostic Tool for Serology of Tick-Borne Diseases
PFI-TT:蜱传疾病血清学快速多重诊断工具
  • 批准号:
    2345816
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
Biopsy-free, label-free 3D virtual histology of intact skin
完整皮肤的免活检、免标记 3D 虚拟组织学
  • 批准号:
    2141157
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Deep learning-based serological test for point-of-care analysis of COVID-19 immunity with a paper-based multiplexed sensor
基于深度学习的血清学测试,使用纸基多重传感器对 COVID-19 免疫力进行即时分析
  • 批准号:
    2149551
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
I-Corps: Multiplexed paper-based test for rapid diagnosis of early-stage Lyme Disease
I-Corps:用于快速诊断早期莱姆病的多重纸质测试
  • 批准号:
    2055749
  • 财政年份:
    2021
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: All-Optical Information Processing Device for Seeing Through Diffusers at the Speed of Light
EAGER:以光速透过漫射器的全光学信息处理装置
  • 批准号:
    2054102
  • 财政年份:
    2020
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
NSF EAGER: DEEP LEARNING-BASED VIRTUAL HISTOLOGY STAINING OF TISSUE SAMPLES
NSF EAGER:基于深度学习的组织样本虚拟组织学染色
  • 批准号:
    1926371
  • 财政年份:
    2019
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
PFI:BIC Human-Centered Smart-Integration of Mobile Imaging and Sensing Tools with Machine Learning for Ubiquitous Quantification of Waterborne and Airborne Nanoparticles
PFI:BIC 以人为中心的移动成像和传感工具与机器学习的智能集成,可实现水性和空气性纳米粒子的普遍定量
  • 批准号:
    1533983
  • 财政年份:
    2015
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: Mobile-phone based single molecule imaging of DNA and length quantification to analyze copy-number variations in genome
EAGER:基于手机的 DNA 单分子成像和长度定量分析基因组中的拷贝数变异
  • 批准号:
    1444240
  • 财政年份:
    2014
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EFRI-BioFlex: Cellphone-based Digital Immunoassay Platform for High-throughput Sensitive and Multiplexed Detection and Distributed Spatio-Temporal Analysis of Influenza
EFRI-BioFlex:基于手机的数字免疫分析平台,用于流感的高通量灵敏多重检测和分布式时空分析
  • 批准号:
    1332275
  • 财政年份:
    2013
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
CAREER: A new Telemedicine Platform using Incoherent Lensfree Cell Holography and Microscopy On a Chip
事业:使用非相干无透镜细胞全息术和芯片显微镜的新型远程医疗平台
  • 批准号:
    0954482
  • 财政年份:
    2010
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant

相似国自然基金

转录因子DNA结合谱绘制新方法及其应用研究
  • 批准号:
    61171030
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Data Management and Bioinformatics
数据管理和生物信息学
  • 批准号:
    10633367
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
Gene Expression Signature Based Screening in Ewing Sarcoma
基于基因表达特征的尤文肉瘤筛查
  • 批准号:
    10440705
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
Multiplex In-Solution Protein Array (MISPA) for high throughput, quantitative, early profiling of pathogen-induced head and neck
多重溶液内蛋白质芯片 (MISPA) 用于对病原体引起的头颈部进行高通量、定量、早期分析
  • 批准号:
    10713928
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
ECHO Laboratory Core at Vanderbilt for Integrated Sample Biobanking and Processing
范德堡大学 ECHO 实验室核心,用于集成样本生物库和处理
  • 批准号:
    10745188
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
Project 2 - Molecular Imaging of ectopic calcification
项目 2 - 异位钙化的分子成像
  • 批准号:
    10628929
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
Investigation of Filaggrin Gene Mutations among Latinx patients with Atopic Dermatitis
拉丁裔特应性皮炎患者丝聚蛋白基因突变的调查
  • 批准号:
    10740811
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
C4: Neuroanatomy
C4:神经解剖学
  • 批准号:
    10705971
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
Mechanisms of Neurodegeneration in CMT4B3: a Complex Pediatric Neurodevelopmental Disorder
CMT4B3 神经退行性变的机制:一种复杂的小儿神经发育障碍
  • 批准号:
    10750509
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
The role of estrogen receptor alpha in prostatic fibrosis contributing to benign prostatic hyperplasia
雌激素受体α在导致良性前列腺增生的前列腺纤维化中的作用
  • 批准号:
    10607151
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
An innovative telomerase-targeted, circulating tumor cell assay for monitoring NSCLC treated with radiation and immunotherapy
一种创新的端粒酶靶向循环肿瘤细胞检测方法,用于监测接受放射和免疫疗法治疗的非小细胞肺癌
  • 批准号:
    10546634
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了