Hard Coatings: Toughness Enhancement through Responsive Phase Change

硬质涂层:通过响应相变增强韧性

基本信息

  • 批准号:
    1537984
  • 负责人:
  • 金额:
    $ 32.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-15 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Hard coatings are used in a wide range of industries and prolong the life and increase the performance of components that experience sliding contact. Coatings on cutting tools represent an annual world market of $20-70 billion, and are essential for manufacturing in aerospace, automotive, and energy industries. Research over the last two decades has resulted in a considerable increase in the hardness of these coatings. However, despite these improvements, a major shortcoming of these ceramic coatings remains: they are brittle, leading to crack formation and premature failure in many applications. This award supports fundamental research in materials science and engineering to address this shortcoming. New coating materials are explored which are not only hard, but also tough. The new coating materials are designed such that atoms rearrange when exposed to large loads. This process stops small cracks from growing into large cracks, which can prevent failure in current hard coating materials, and in turn, failure of the component. This research has the potential to transform industrial coating materials design and facilitate the development of wear-resistant hard coatings for emerging applications ranging from environment-friendly lubricant-free cutting tools to high-performance bearings for fuel-efficient jet engines and high-temperature turbines for gas, wind, or concentrating solar power plants.This integrated experimental and theoretical research effort will explore phase-change toughening mechanisms for hard coating materials. The key idea is to create a materials system where the stress concentration near crack tips induces a transformation from a metastable cubic to a stable hexagonal phase, facilitating plasticity and/or local expansion which, in turn, suppresses crack propagation and results in a dramatic increase in the fracture toughness. The research explores if the ductility (and therefore the toughness) in wear-resistant nitrides and carbides can be increased through stress-induced phase change, without sacrificing their hardness. Such transformation toughening is well known for bulk ceramic materials like zirconia and, if successfully applied to coating materials, has the potential to dramatically increase the wear-resistance of protective coatings. The study involves (i) first-principles calculations to predict most promising compositions, (ii) coating synthesis by reactive sputtering including control of microstructure through ion-irradiation, epitaxial constraints, and temperature, (iii) high pressure phase transition studies using a diamond anvil cell, and (iv) materials characterization by nanoindentation to demonstrate enhanced toughness.
硬质涂层广泛应用于各个行业,可延长滑动接触部件的使用寿命并提高其性能。切削工具涂层每年的全球市场价值为 20-700 亿美元,对于航空航天、汽车和能源行业的制造至关重要。过去二十年的研究已经使这些涂层的硬度显着增加。然而,尽管有这些改进,这些陶瓷涂层的一个主要缺点仍然存在:它们很脆,导致在许多应用中形成裂纹和过早失效。该奖项支持材料科学和工程的基础研究,以解决这一缺陷。探索出不仅坚硬而且坚韧的新型涂层材料。新涂层材料的设计使得原子在受到大负载时会重新排列。该过程可以阻止小裂纹发展成大裂纹,从而防止当前硬涂层材料失效,进而防止部件失效。这项研究有可能改变工业涂层材料的设计,并促进耐磨硬涂层的开发,其应用范围从环保型免润滑切削工具到节能喷气发动机的高性能轴承以及燃气、风能或聚光太阳能发电厂的高温涡轮机。这项综合实验和理论研究工作将探索硬涂层材料的相变增韧机制。其关键思想是创建一种材料系统,其中裂纹尖端附近的应力集中会导致从亚稳立方相转变为稳定的六方相,从而促进塑性和/或局部膨胀,从而抑制裂纹扩展并导致断裂韧性显着增加。该研究探讨了是否可以通过应力引起的相变来提高耐磨氮化物和碳化物的延展性(以及韧性),而不牺牲其硬度。这种相变增韧对于氧化锆等块状陶瓷材料来说是众所周知的,如果成功应用于涂层材料,则有可能显着提高保护涂层的耐磨性。该研究涉及(i)第一性原理计算以预测最有前途的成分,(ii)通过反应溅射合成涂层,包括通过离子辐照、外延约束和温度控制微观结构,(iii)使用金刚石砧室进行高压相变研究,以及(iv)通过纳米压痕进行材料表征以证明增强的韧性。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conductive surface oxide on CrN(001) layers
  • DOI:
    10.1063/1.5091034
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Mary E. McGahay;D. Gall
  • 通讯作者:
    Mary E. McGahay;D. Gall
Energetics of point defects in rocksalt structure transition metal nitrides: Thermodynamic reasons for deviations from stoichiometry
  • DOI:
    10.1016/j.actamat.2018.07.074
  • 发表时间:
    2018-10-15
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Balasubramanian, Karthik;Khare, Sanjay, V;Gall, Daniel
  • 通讯作者:
    Gall, Daniel
Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides
  • DOI:
    10.1016/j.actamat.2018.04.033
  • 发表时间:
    2018-06-15
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Balasubramanian, Karthik;Khare, Sanjay V.;Gall, Daniel
  • 通讯作者:
    Gall, Daniel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Gall其他文献

NiAl as a Potential Material for Liner- and Barrier-Free Interconnect in Ultrasmall Technology Node
NiAl 作为超小型技术节点中无衬里和无障碍互连的潜在材料
Epitaxial TiCemsubx/sub/em(001) layers: Phase formation and physical properties vs C-to-Ti ratio
  • DOI:
    10.1016/j.actamat.2022.117643
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Peijiao Fang;C.P. Mulligan;Ru Jia;Jian Shi;S.V. Khare;Daniel Gall
  • 通讯作者:
    Daniel Gall
CuTi as Potential Liner- and Barrier-Free Interconnect Conductor
CuTi 作为潜在的无衬里和无障碍互连导体
An Adaptable Implementation of ACT-R with Refraction in Constraint Handling Rules
约束处理规则中带有折射的 ACT-R 的适应性实现
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Gall
  • 通讯作者:
    Daniel Gall
Mechanical properties of compositionally modulated epitaxial VN(001)/VC(001) films
成分调制外延VN(001)/VC(001)薄膜的力学性能
  • DOI:
    10.1016/j.actamat.2025.121135
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Moishe Y.E. Azoff-Slifstein;Anshuman Thakral;Sadiq S. Nishat;Md. Rafiqul Islam;Patrick E. Hopkins;Daniel Gall
  • 通讯作者:
    Daniel Gall

Daniel Gall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Gall', 18)}}的其他基金

Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
  • 批准号:
    2328906
  • 财政年份:
    2023
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Continuing Grant
E2CDA: Type I: Collaborative Research: Interconnects Beyond Cu
E2CDA:I 类:协作研究:铜以外的互连
  • 批准号:
    1740271
  • 财政年份:
    2017
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Continuing Grant
Metal-insulator Transitions in 2D and 3D Refractory Nitrides
2D 和 3D 难熔氮化物中的金属-绝缘体转变
  • 批准号:
    1712752
  • 财政年份:
    2017
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Continuing Grant
DMREF/Collaborative Research: Nitride Discovery - Creating the Knowledge Base for Hard Coating Synthesis
DMREF/合作研究:氮化物发现 - 创建硬涂层合成知识库
  • 批准号:
    1629230
  • 财政年份:
    2016
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Standard Grant
Nitride Compounds: Property Anomalies Near Structural Instabilities
氮化物:接近结构不稳定的性质异常
  • 批准号:
    1309490
  • 财政年份:
    2013
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Continuing Grant
DMREF/Collaborative Research: Nitride Discovery - Creating the Knowledge Base for Hard Coating Design
DMREF/协作研究:氮化物发现 - 创建硬质涂层设计知识库
  • 批准号:
    1234872
  • 财政年份:
    2012
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Standard Grant
Adaptive High-Temperature Lubrication through Nanopore Channels
通过纳米孔通道进行自适应高温润滑
  • 批准号:
    1031201
  • 财政年份:
    2010
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Standard Grant
Self-Lubricating Nanoporous Hard Coatings
自润滑纳米孔硬质涂层
  • 批准号:
    0653843
  • 财政年份:
    2007
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Standard Grant
CAREER: Nanostructure Growth from the Vapor Phase
职业:气相纳米结构的生长
  • 批准号:
    0645312
  • 财政年份:
    2007
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Continuing Grant
Interlinked Nanorod Coatings
互连纳米棒涂层
  • 批准号:
    0727413
  • 财政年份:
    2007
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Standard Grant

相似海外基金

M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
  • 批准号:
    10096988
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    EU-Funded
Reducing the cost of fuel cell components and pilot production of bipolar plate coatings
降低燃料电池组件成本并试产双极板涂料
  • 批准号:
    10088165
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
  • 批准号:
    10089592
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Collaborative R&D
Nanoengineered hybrid coatings that control inflammation to artificial bone
控制人造骨炎症的纳米工程混合涂层
  • 批准号:
    DP240103271
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Discovery Projects
Novel Ceramic Coatings for High Temperature Applications
适用于高温应用的新型陶瓷涂层
  • 批准号:
    2905977
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Studentship
Collaborative Research: Stanford-Florida Program in Support of LIGO on Coatings and Core Optics
合作研究:斯坦福-佛罗里达计划支持 LIGO 涂层和核心光学器件
  • 批准号:
    2309086
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Continuing Grant
Scaling up plant-protein based coatings for food packaging
扩大用于食品包装的植物蛋白基涂料
  • 批准号:
    10109386
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Launchpad
Advanced protective coatings for thermal energy management devices
用于热能管理设备的先进保护涂层
  • 批准号:
    LP230100412
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Linkage Projects
Lignin-based coatings: A novel approach to turn challenges into opportunities for anti-corrosion and anti-wear applications
木质素涂料:一种将防腐和抗磨损应用挑战转化为机遇的新方法
  • 批准号:
    EP/Y022009/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Research Grant
Computational Multi-Models Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings (M2DESCO)
计算多模型支持安全设计
  • 批准号:
    10110861
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了