Collaborative Research : Nonlinear Long Wave Amplification in the Shadow Zone of Offshore Islands
合作研究:近海岛屿阴影区的非线性长波放大
基本信息
- 批准号:1538624
- 负责人:
- 金额:$ 66.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Field survey reports from recent tsunamis suggest that local residents in mainland areas shadowed by nearby islands may be under the impression that these islands protect them from tsunamis. Recent numerical results using the mathematical procedure known as "active learning" have generated substantial attention in world media (The Economist, Der Spiegel, Science, Korean Herald, Kathimerini), because they suggest that, in most cases, islands amplify tsunamis in the shadow zones behind them. In this application, the active learning methodology requires about 100,000 times fewer computations than conventional mathematical approaches, and it is unclear if the amplification effect is real. Through comprehensive laboratory experiments, the physical manifestation of this effect will be studied. If indeed the physical experiments confirm the numerical idealizations, this research will help save lives by better targeting educational campaigns to at risk populations. For example, it will be determined if coastlines shadowed by offshore islands along the Pacific Coast of the US are more vulnerable than earlier believed. The early numerical results from active learning are only applicable for non-breaking waves. While many existing numerical codes attempt to model mild long-wave breaking, as they sometimes do, it is unclear how well they perform when scattered long waves break and interact. It is equally unclear if the isthmus between islands scatters the wave energy or focuses further in the mainland behind them, or under what geographical conditions either effect prevails. Through the laboratory experiments, it will be determined if this vexing phenomenon persists when waves break. The results will help validate active learning as a mathematical procedure for uncertainty reduction which greatly reduces computational costs. Also, a substantial laboratory data set will be developed to help benchmark numerical computations for interacting breaking wave fronts, under conditions as yet unstudied. An outreach campaign is planned to educate populations at risk and improve the awareness of emergency managers on this unusual amplification phenomenon.
最近海啸的实地调查报告显示,在被附近岛屿笼罩的大陆地区,当地居民可能认为这些岛屿可以保护他们免受海啸的侵袭。最近使用被称为“主动学习”的数学程序的数值结果引起了世界媒体(《经济学人》、《明镜周刊》、《科学》、《韩国先驱报》、《Kathimerini》)的大量关注,因为它们表明,在大多数情况下,岛屿放大了海啸背后阴影区的海啸。在这个应用中,主动学习方法需要的计算量比传统数学方法少10万倍左右,而且目前还不清楚这种放大效应是否真实。通过综合的实验室实验,研究这种效应的物理表现。如果物理实验确实证实了数字理想化,这项研究将通过更好地针对高危人群开展教育活动来帮助拯救生命。例如,将确定美国太平洋沿岸被近海岛屿笼罩的海岸线是否比之前认为的更脆弱。主动学习的早期数值结果只适用于非破碎波。虽然许多现有的数字代码试图模拟轻微的长波断裂,正如它们有时所做的那样,但尚不清楚它们在散射长波断裂和相互作用时的表现如何。同样不清楚的是,岛屿之间的地峡是分散了波浪能量,还是进一步集中在岛屿后面的大陆上,或者在什么地理条件下,这两种效应都会发生。通过实验室实验,将确定波浪破裂时这种令人烦恼的现象是否仍然存在。结果将有助于验证主动学习作为一种减少不确定性的数学过程,大大降低了计算成本。此外,将开发大量的实验室数据集,以帮助在尚未研究的条件下相互作用的破波锋面的基准数值计算。计划开展一项外联运动,教育处于危险中的人口,提高应急管理人员对这一不寻常的扩大现象的认识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Costas Synolakis其他文献
Costas Synolakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Costas Synolakis', 18)}}的其他基金
RAPID: Field Survey of the 27 September 2018 Sulawesi Tsunami
RAPID:2018 年 9 月 27 日苏拉威西海啸现场调查
- 批准号:
1906162 - 财政年份:2018
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
RAPID: Tsunami Reconnaissance of the 27 February 2010 Chilean Tsunami and Earthquake in Chile and Pacific Islands
RAPID:2010 年 2 月 27 日智利海啸以及智利和太平洋岛屿地震的海啸侦察
- 批准号:
1034886 - 财政年份:2010
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
Collaborative Interdisciplinary Research-Initial Waves from Deformable Submarine Landslides
跨学科合作研究——可变形海底滑坡的初始波
- 批准号:
0928905 - 财政年份:2009
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
SGER: Reconnaissance Survey of the July 17, 2006 Central Javan Earthquake and Tsunami
SGER:2006 年 7 月 17 日中爪哇地震和海啸勘察
- 批准号:
0646278 - 财政年份:2006
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
Collaborative Research Utilizing NEES Facilities: Landslide Generated Tsunamis and Runup
利用 NEES 设施进行合作研究:山体滑坡引发的海啸和上升
- 批准号:
0324434 - 财政年份:2004
- 资助金额:
$ 66.88万 - 项目类别:
Continuing Grant
Collaborative Research: Generation Mechanisms of Near-and-Far Field Tsunamis
合作研究:近场和远场海啸的发生机制
- 批准号:
0301081 - 财政年份:2003
- 资助金额:
$ 66.88万 - 项目类别:
Continuing Grant
Reconnaissance Survey of the September 9, 2002 Papua New Guinea Earthquake and Tsunami
2002年9月9日巴布亚新几内亚地震和海啸勘察
- 批准号:
0244537 - 财政年份:2003
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
SGER: Field Survey of Easter Island
SGER:复活节岛实地调查
- 批准号:
0105171 - 财政年份:2001
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
Cooperative Research: Coastal Effects of Tsunamis
合作研究:海啸的海岸影响
- 批准号:
0099333 - 财政年份:2001
- 资助金额:
$ 66.88万 - 项目类别:
Continuing Grant
SGER Proposal: Field Survey of the Marquesas Islands
SGER 提案:马克萨斯群岛实地调查
- 批准号:
0092531 - 财政年份:2000
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Nonlinear Wake Observations at a Kuroshio Seamount (NOKS)
合作研究:黑潮海山非线性尾流观测 (NOKS)
- 批准号:
2318951 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Wake Observations at a Kuroshio Seamount (NOKS)
合作研究:黑潮海山非线性尾流观测 (NOKS)
- 批准号:
2318952 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325172 - 财政年份:2023
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325171 - 财政年份:2023
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
- 批准号:
2348826 - 财政年份:2023
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
- 批准号:
2403552 - 财政年份:2023
- 资助金额:
$ 66.88万 - 项目类别:
Continuing Grant
Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
- 批准号:
2308639 - 财政年份:2023
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
- 批准号:
2308640 - 财政年份:2023
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325170 - 财政年份:2023
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant