EAGER: Two-Dimensional Material-Based Epidermal Active Sensors for Brain Monitoring.
EAGER:用于大脑监测的基于二维材料的表皮主动传感器。
基本信息
- 批准号:1541684
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electroencephalographic (EEG) measures subtle voltage fluctuations along the scalp resulting from ionic current flows within the neurons of the brain. EEG is widely used as a low cost, portable, and noninvasive means to capture not only cognitive and memory performance, but also brain disorders like epilepsy and stroke. Conventional EEG recording is obtained by placing individual thick and stiff electrodes on the scalp with conductive gel after skin abrasion which enhances electrode-skin contact. For many decades, EEG technology has suffered from limitations such as low spatial resolution, poor signal-to-noise ratio without proper signal amplification, time consuming and obstructive electrode connections, and short measurement time as gel dries out. Such limitations are partially due to the incompatibility between the soft, curvilinear, and deformable human skin and the hard, planar, and rigid electrodes and electronics. The ultrathin, high electronic performance, and transparency of atomically thick two-dimensional materials offer clear mechanical, electronic, and optical advantages over silicon in the neuroelectronics. This research proposes to explore the idea of replacing conventional rigid EEG electrodes by tattoo-like ultrathin, ultrasoft, dry electrodes and signal amplifiers fabricated from two-dimensional materials. Preliminary results indicate this idea is feasible and further research will prove the feasibility and future prospects for tattoo-like, long lasting, and high performance neuroelectronics to benefit society. In addition, the graduate student and post-doctoral researchers working on this research effort will gain advanced scientific and engineering skills needed to be technical leaders in industry, academia or government post-graduate careers. Moreover, undergraduate students from diverse backgrounds will be recruited to participate in the research effort to promote advanced science and engineering careers.The objective of this proposal is to carry out a feasibility study that two-dimensional materials such as graphene and atomically thin molybdenum disulfide can be applied as the electrode and amplifier materials for noninvasive, long-term, high fidelity Electroencephalographic sensing. The major technical barrier towards two-dimensional materials based epidermal active EEG sensor lies in the device design, heterogeneous fabrication, and reliable bio-integration with the final goal of enhanced EEG sensing. An innovative active electrode architecture is proposed in which graphene is employed as both the sensing and gate electrodes, and molybdenum disulfide integrated with ultrathin polymer dielectrics and graphene source/drain as the on-site signal amplifier. Two research thrusts are proposed to accomplish the feasibility study: i) fabricating and validating graphene based passive epidermal EEG electrodes, and ii) integrating molybdenum disulfide vertically on top of the graphene electrode with ultrathin polymer dielectrics and graphene source/drain as a transistor amplifier for active EEG recording. The expected outcome is an affirmative decision on the feasibility of an integrated neuroelectronics that can be conformally laminated on human skin without conductive gel but still able to record long term, high fidelity EEG with orders of magnitude signal amplification. For the targeted gain of several hundreds the active electrode minimizes both the extrinsic noise and allows substantial reduction of the electrode arrays.
脑电图(EEG)测量大脑神经元内离子电流流动产生的沿头皮的微妙电压波动。脑电图作为一种低成本、便携式、无创的手段被广泛使用,不仅可以捕获认知和记忆表现,还可以捕获癫痫和中风等脑部疾病。传统的脑电图记录是通过在皮肤磨损后用导电凝胶将单个厚而硬的电极放置在头皮上来获得的,这增强了电极与皮肤的接触。几十年来,脑电图技术一直受到诸如空间分辨率低、信噪比差、没有适当的信号放大、耗时且有阻碍性的电极连接以及凝胶干燥时测量时间短等限制。这种限制部分是由于柔软、曲线和可变形的人体皮肤与坚硬、平面和刚性的电极和电子设备之间的不兼容性造成的。原子厚二维材料的超薄、高电子性能和透明度在神经电子学领域比硅具有明显的机械、电子和光学优势。这项研究提出探索用二维材料制成的类似纹身的超薄、超软、干电极和信号放大器取代传统的刚性脑电图电极的想法。初步结果表明这一想法是可行的,进一步的研究将证明类纹身、持久、高性能神经电子学造福社会的可行性和未来前景。此外,从事这项研究工作的研究生和博士后研究人员将获得成为工业界、学术界或政府研究生职业的技术领导者所需的先进科学和工程技能。此外,还将招募来自不同背景的本科生参与研究工作,以促进先进的科学和工程事业。该提案的目的是开展可行性研究,研究石墨烯和原子薄二硫化钼等二维材料可用作无创、长期、高保真脑电图传感的电极和放大器材料。基于二维材料的表皮主动脑电图传感器的主要技术障碍在于设备设计、异构制造和可靠的生物集成,最终目标是增强脑电图传感。提出了一种创新的有源电极架构,其中石墨烯用作传感电极和栅电极,二硫化钼与超薄聚合物电介质和石墨烯源极/漏极集成作为现场信号放大器。提出了两个研究重点来完成可行性研究:i)制造和验证基于石墨烯的被动表皮脑电图电极,以及ii)将二硫化钼垂直集成在石墨烯电极顶部与超薄聚合物电介质和石墨烯源极/漏极作为用于主动脑电图记录的晶体管放大器。预期的结果是对集成神经电子学的可行性做出肯定的决定,该神经电子学可以在不使用导电凝胶的情况下保形地层压在人体皮肤上,但仍然能够记录长期、高保真脑电图,并具有多个数量级的信号放大。对于数百的目标增益,有源电极最大限度地减少了外在噪声,并允许大幅减少电极阵列。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nanshu Lu其他文献
Brain implantation of soft bioelectronics via embryonic development
通过胚胎发育进行软生物电子学的大脑植入
- DOI:
10.1038/s41586-025-09106-8 - 发表时间:
2025-06-11 - 期刊:
- 影响因子:48.500
- 作者:
Hao Sheng;Ren Liu;Qiang Li;Zuwan Lin;Yichun He;Thomas S. Blum;Hao Zhao;Xin Tang;Wenbo Wang;Lishuai Jin;Zheliang Wang;Emma Hsiao;Paul Le Floch;Hao Shen;Ariel J. Lee;Rachael Alice Jonas-Closs;James Briggs;Siyi Liu;Daniel Solomon;Xiao Wang;Jessica L. Whited;Nanshu Lu;Jia Liu - 通讯作者:
Jia Liu
Electromechanics of stretchable hybrid response pressure sensors based on porous nanocomposites
基于多孔纳米复合材料的可拉伸混合响应压力传感器的机电学
- DOI:
10.1016/j.jmps.2024.105872 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:6.000
- 作者:
Zheliang Wang;Zhengjie Li;Sungmin Sun;Sangjun Kim;Xianke Feng;Hongyang Shi;Nanshu Lu - 通讯作者:
Nanshu Lu
Non-invasive Cardiac Output Monitoring in Congenital Heart Disease
先天性心脏病的无创心输出量监测
- DOI:
10.1007/s40746-023-00274-1 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Tandon;Sarnab Bhattacharya;Ayse Morca;Omer T Inan;Daniel S Munther;Shawn D. Ryan;Samir Q Latifi;Nanshu Lu;J. Lasa;Bradley S Marino;O. Baloglu - 通讯作者:
O. Baloglu
A 1V 0.25uW inverter-stacking amplifier with 1.07 noise efficiency factor
噪声效率系数为 1.07 的 1V 0.25uW 逆变器堆叠放大器
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Linxiao Shen;Nanshu Lu;Nan Sun - 通讯作者:
Nan Sun
Combining VR with electroencephalography as a frontier of brain-computer interfaces
VR与脑电图相结合作为脑机接口的前沿
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hongbian Li;Hyonyoung Shin;Luis Sentis;Ka;José del R. Millán;Nanshu Lu - 通讯作者:
Nanshu Lu
Nanshu Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nanshu Lu', 18)}}的其他基金
ASCENT: Multimodal chest e-tattoo with customized IC and deep learning algorithm for tracking and predicting progressive pneumonia
ASCENT:多模式胸部电子纹身,具有定制 IC 和深度学习算法,用于跟踪和预测进行性肺炎
- 批准号:
2133106 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Mechanics of Miniature Surface Craters for Reversible Adhesion
可逆粘附的微型表面凹坑的力学
- 批准号:
1663551 - 财政年份:2017
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Stretchable Planar Antenna Modulated by Integrated Circuit (SPAMIC) for the Near Field Communication (NFC) of Epidermal Electrophysiological Sensors (EEPS)
用于表皮电生理传感器 (EEPS) 近场通信 (NFC) 的集成电路 (SPAMIC) 调制可拉伸平面天线
- 批准号:
1509767 - 财政年份:2015
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
CAREER: Flexoelectricity of Nanomaterials on Deformable Substrates
职业:可变形基底上纳米材料的柔性电
- 批准号:
1351875 - 财政年份:2014
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Adhesion Mechanics of Bio-Electronics Interface
生物电子界面的粘附力学
- 批准号:
1301335 - 财政年份:2013
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
激发态氢气分子(e,2e)反应三重微分截面的高阶波恩近似和two-step mechanism修正
- 批准号:11104247
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Transfer by Contact using Adhesion Engineering for Integration of Two-Dimensional Materials into Functional Devices
EAGER:利用粘合工程通过接触转移将二维材料集成到功能器件中
- 批准号:
2135846 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: Investigation of local strain and single photon emitters in two-dimensional materials
EAGER:二维材料中局部应变和单光子发射器的研究
- 批准号:
2128534 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: SUPER: Search for high-temperature superconductivity in heterostructured two-dimensional organic materials
EAGER:SUPER:寻找异质结构二维有机材料的高温超导性
- 批准号:
2133014 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
EAGER: Enhancement of Piezoelectric Properties in two-dimensional materials and its application
EAGER:二维材料压电性能的增强及其应用
- 批准号:
2033044 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: Numerical two-dimensional fluid simulations and finite element analysis to model an adaptive and flexible microplasma discharge system.
EAGER:数值二维流体模拟和有限元分析,用于对自适应且灵活的微等离子体放电系统进行建模。
- 批准号:
1917144 - 财政年份:2019
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: Nanomodular Systems for Efficient Light Emission from a Heterogeneous Integration of Polymers, Two-Dimensional Semiconductors and Insulators
EAGER:通过聚合物、二维半导体和绝缘体的异质集成实现高效发光的纳米模块化系统
- 批准号:
1938179 - 财政年份:2019
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: BRAIDING: Braiding Majorana bound states in two-dimensional epitaxial semiconductor-superconductor structures
EAGER:编织:在二维外延半导体超导结构中编织马约拉纳束缚态
- 批准号:
1836687 - 财政年份:2018
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: Enabling Quantum Leap: Nanoengineering of Two-Dimensional and Twisted Ferromagnets Towards Room-Temperature Quantum Logic
EAGER:实现量子飞跃:二维和扭曲铁磁体纳米工程迈向室温量子逻辑
- 批准号:
1838456 - 财政年份:2018
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: Vertical-carrier-transport two-dimensional photo-harvesting devices with nanocavity enhancement
EAGER:具有纳米腔增强功能的垂直载流子传输二维光捕获装置
- 批准号:
1745621 - 财政年份:2017
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: Advancing High-Efficiency Nanoscale Antiferromagnetic Spintronics with Two-Dimensional Half Metals
EAGER:利用二维半金属推进高效纳米级反铁磁自旋电子学
- 批准号:
1753380 - 财政年份:2017
- 资助金额:
$ 16万 - 项目类别:
Standard Grant














{{item.name}}会员




