BIGDATA: Collaborative Research: F: Study of a Cyber-Enabled Social Computing Framework for Improving Practice in Online Computing Communities

BIGDATA:协作研究:F:研究网络驱动的社交计算框架,以改进在线计算社区的实践

基本信息

  • 批准号:
    1546393
  • 负责人:
  • 金额:
    $ 159.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Data science techniques have revolutionized many academic fields and led to terrific gains in the commercial sector. They have to date been underutilized in solving critical problems in the US educational system, particularly in understanding Science, Technology, Engineering and Mathematics (STEM) learning and learning environments, broadening participation in STEM, and increasing retention for students traditionally underserved in STEM. The goals of the Directorate for Education and Human Resources through the Critical Techniques and Technologies for Advancing Foundations and Applications of Big Data Science & Engineering (BIGDATA) program are to advance fundamental understanding of key questions in the field, and catalyze the use of data science in Education Research. Computing has become an integral part of the practice of in modern science, technology engineering, and mathematics (STEM) fields. As a result, the STEM+Computing Partnership (STEM+C) program seeks to integrate the use of computational approaches in STEM teaching and learning and understand how this integration can improve STEM learning, engagement, and persistence. In this proposal, the Principal Investigators (PIs) will examine environments that many people engage in independently to learn computing, online communities and massive open online courses (MOOCs). This activity could be very compelling as people come to these environments because they have personal goals to learn the material. However, a challenge in these environments is that there is little support for learning. In addition, these environments are not adaptive to learners' needs. This project will tackle both of these challenges. The PIs will first characterize groups of learners to understand their needs and then design approaches to personalizing the environments based on those needs.The PIs address a need for both learning and independent online work communities by providing a combined learning work community. Many authentic production communitites, such as GitHub, do not provide support for novices who want to learn to contribute. Similarly many learning communities, such as MOOCs and other online learning environments, do not provide outlets for learners' products to become authentic. The PIs will combine data from MOOCs and online communities to discover groups of participants who behave in similar ways and investigate how to support the needs of these groups. This will lead to the proposed novel combined learning and work community that both provides support and offers authentic outlets for work products that are valued beyond a particular course.
数据科学技术已经给许多学术领域带来了革命性的变化,并在商业领域带来了巨大的收益。到目前为止,它们在解决美国教育系统中的关键问题方面一直没有得到充分利用,特别是在了解科学、技术、工程和数学(STEM)学习和学习环境、扩大STEM的参与以及增加传统上STEM服务不足的学生的留住方面。教育和人力资源局通过推进大数据科学与工程(BigData)计划的关键技术和技术(BigData)计划的目标是促进对该领域关键问题的基本理解,并促进数据科学在教育研究中的应用。计算已经成为现代科学、技术、工程和数学(STEM)领域实践中不可或缺的一部分。因此,STEM+计算伙伴关系(STEM+C)计划寻求在STEM教学和学习中整合计算方法的使用,并了解这种整合如何提高STEM的学习、参与度和持久性。在这项提案中,首席调查员(PI)将研究许多人独立参与学习计算、在线社区和大规模在线公开课(MOOC)的环境。当人们来到这些环境时,这项活动可能非常有吸引力,因为他们有学习材料的个人目标。然而,在这些环境中的一个挑战是,对学习的支持很少。此外,这些环境不适应学习者的需求。这个项目将解决这两个挑战。PI将首先描述学习者群体的特征,以了解他们的需求,然后根据这些需求设计个性化环境的方法。PI通过提供一个组合的学习工作社区来满足对学习和独立在线工作社区的需求。许多真正的制作社区,如GitHub,并不为想要学习贡献的新手提供支持。同样,许多学习社区,如MOOC和其他在线学习环境,并不为学习者的产品变得真实提供渠道。PIS将结合MOOC和在线社区的数据,发现行为相似的参与者群体,并调查如何支持这些群体的需求。这将导致拟议的新的学习和工作相结合的社区,既提供支持,也为特定课程以外的工作产品提供真正的渠道。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
"This is damn slick!": estimating the impact of tweets on open source project popularity and new contributors
“这太狡猾了!”:估计推文对开源项目受欢迎程度和新贡献者的影响
E-Mentoring for Software Engineering: A Socio-Technical Perspective
软件工程电子指导:社会技术视角
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carolyn Rose其他文献

The peer-led Honest, Open, Proud program to decrease the impact of mental illness stigma among German military personnel: randomized controlled trial
  • DOI:
    10.1007/s00127-025-02960-x
  • 发表时间:
    2025-07-22
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Nicolas Rüsch;Christian Helms;Jana Hörger;Burkhard Höhle;Hendryk Bernert;Patric Muschner;Carolyn Rose;Patrick W. Corrigan;Nadine Mulfinger;Peter Zimmermann;Gerd-Dieter Willmund
  • 通讯作者:
    Gerd-Dieter Willmund
Equine-assisted psychotherapy with traumatized couples-improvement of relationship quality and psychological symptoms.
对受创伤的夫妇进行马辅助心理治疗——改善关系质量和心理症状。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    G. Willmund;P. Zimmermann;Christina Alliger;Alexander Varn;Christian Fischer;Ilka Parent;Andreas Sobottka;R. Bering;Carolyn Rose;A. Ströhle;Kai Köhler
  • 通讯作者:
    Kai Köhler
Effects of Social Presence and Social Role on Help-Seeking and Learning
社会存在和社会角色对寻求帮助和学习的影响
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iris Howley;Takayuki Kanda;Kotaro Hayashi;Carolyn Rose
  • 通讯作者:
    Carolyn Rose
Making a difference: Analytics for quality knowledge-building conversation
有所作为:高质量知识构建对话的分析

Carolyn Rose的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carolyn Rose', 18)}}的其他基金

Collaborative Research: Integrating Language-Based AI Across the High School Curriculum to Create Diverse Pathways to AI-Rich Careers
合作研究:将基于语言的人工智能整合到高中课程中,为人工智能丰富的职业创造多样化的途径
  • 批准号:
    2241670
  • 财政年份:
    2023
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
Injecting Learning into Work: Enhancing Career Advancement through Transformation of Professional Development in Technical Career Paths
将学习融入工作:通过技术职业道路的专业发展转变来促进职业发展
  • 批准号:
    1917955
  • 财政年份:
    2019
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
ICLS 2018 Rethinking Learning in the Digital Age in ICLS Doctoral Consortium and Early Career Workshops
ICLS 2018 ICLS 博士联盟和早期职业研讨会重新思考数字时代的学习
  • 批准号:
    1820520
  • 财政年份:
    2018
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Human-Technology Partnership Supporting Career Path Exploration and Navigation
协作研究:支持职业道路探索和导航的人类技术合作伙伴关系
  • 批准号:
    1822831
  • 财政年份:
    2018
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
EXP: Collaborative Research: Fostering Ecologies of Online Learners through Technology Augmented Human Facilitation
EXP:协作研究:通过技术增强人类便利性培育在线学习者的生态
  • 批准号:
    1320064
  • 财政年份:
    2013
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
CSCL 2013: Learning across Levels of Space, Time, and Scale Doctoral Consortium and Early Career Workshops
CSCL 2013:跨空间、时间和规模的学习博士联盟和早期职业研讨会
  • 批准号:
    1331135
  • 财政年份:
    2013
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
Student Research Workshop in Computational Linguistics at the North American Association for Computational Linguistics and Human Language Technologies 2009 Conference
北美计算语言学和人类语言技术协会 2009 年会议上的计算语言学学生研究研讨会
  • 批准号:
    0907847
  • 财政年份:
    2009
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
Dynamic Support for Virtual Math Teams
对虚拟数学团队的动态支持
  • 批准号:
    0835426
  • 财政年份:
    2009
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Continuing Grant
Exploring Adaptive Support for Virtual Math Teams
探索虚拟数学团队的自适应支持
  • 批准号:
    0723580
  • 财政年份:
    2007
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
Calculategy: Exploring the Impact of Tutorial Dialogue Strategy in Shaping Student Behavior in Effective Tutorial Dialogue for Calculus
计算学:探索教程对话策略在有效微积分教程对话中塑造学生行为的影响
  • 批准号:
    0411483
  • 财政年份:
    2004
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 159.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了