EAGER: Exploiting a myopic opponent in imperfect-information games: Toward medical applications
EAGER:在不完美信息游戏中利用短视的对手:迈向医疗应用
基本信息
- 批准号:1546752
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Living organisms adapt to challenges through evolution and adaptation. These survival mechanisms have proven to be a key difficulty in developing therapies, since the challenged organisms develop resistance. It would be desirable to be able to harness evolution and adaptation for therapeutic and technological goals. For example, through a sequence of appropriate manipulations, could we get a heterogeneous population of cancer cells to evolve to benign ones? Or, could we steer the evolution of the population to a state where we can destroy it? Could we evolve bacteria that eat toxins from the environment? The PI proposes this to be done using computational game theory approaches. Biological opponents have a distinct weakness that can be exploited: evolution and adaptation is myopic - it does not look ahead in the game tree. The PI proposes to develop techniques for exploiting opponents that cannot look ahead in imperfect-information games. This project will set the stage for opponent-exploitation approaches to battling diseases in a broad range of context by computationally exploiting the diseases' myopic evolution/adaptation. This applies to basically an unlimited number of diseases (at the population, individual, and drug design levels), to synthetic biology (without inserting foreign genetic material), and to asking fundamental questions in our ability to steer evolution/adaptation. The work thus has the potential to pave the way for exceptionally broad impact. The proposed work has significant educational impact as well, beyond training and mentoring a PhD student working on this project. The PI will incorporate some of the most important results from the proposed research into his PhD-level courses Advanced AI and Foundations of Electronic Marketplaces. He also proposes to give talks and tutorials on these topics.Living organisms adapt to challenges through evolution and adaptation. These survival mechanisms have proven to be a key difficulty in developing therapies, since the challenged organisms develop resistance. It would be desirable to be able to harness evolution and adaptation for therapeutic and technological goals. For example, through a sequence of appropriate manipulations, could we get a heterogeneous population of cancer cells to evolve to benign ones? Or, could we steer the evolution of the population to a state where we can destroy it? Could we evolve bacteria that eat toxins from the environment? The PI proposes this to be done using computational game theory approaches. Biological opponents have a distinct weakness that can be exploited: evolution and adaptation is myopic - it does not look ahead in the game tree. The PI proposes to develop techniques for exploiting opponents that cannot look ahead in imperfect-information games. The proposed work has three intellectual foci. First, extending an IJCAI-15 paper by Kroer and Sandholm to handle the setting where the myopic opponent's node evaluation is not known exactly, but rather with uncertainty. Second, developing game abstraction techniques that leverage the opponent's myopia. Third, developing game representations that are tractable in settings where the opponent is a population (e.g., of cells) rather than an individual.
生物通过进化和适应来适应挑战。这些生存机制已被证明是开发治疗方法的关键困难,因为受挑战的生物体会产生耐药性。希望能够利用进化和适应来实现治疗和技术目标。例如,通过一系列适当的操作,我们是否可以让一群异质的癌细胞进化成良性细胞?或者,我们可以引导种群的进化到一个我们可以摧毁它的状态吗?我们能进化出吃环境中毒素的细菌吗?PI建议使用计算博弈论方法来完成这一点。生物学上的对手有一个明显的弱点可以利用:进化和适应是短视的--它没有在游戏树中向前看。PI建议开发技术,以利用对手,不能预见未来的信息游戏。 该项目将通过计算利用疾病的近视进化/适应,为在广泛的背景下对抗疾病的主动开发方法奠定基础。这基本上适用于无限数量的疾病(在人口,个人和药物设计层面),合成生物学(不插入外来遗传物质),以及对我们引导进化/适应能力的基本问题。因此,这项工作有可能为产生特别广泛的影响铺平道路。拟议的工作具有重大的教育影响,以及超越培训和指导博士生在这个项目上工作。PI将把拟议研究中的一些最重要的成果纳入他的博士课程高级人工智能和电子市场基础。他还建议就这些主题进行讲座和辅导。生物体通过进化和适应来适应挑战。这些生存机制已被证明是开发治疗方法的关键困难,因为受挑战的生物体会产生耐药性。希望能够利用进化和适应来实现治疗和技术目标。例如,通过一系列适当的操作,我们是否可以让一群异质的癌细胞进化成良性细胞?或者,我们可以引导种群的进化到一个我们可以摧毁它的状态吗?我们能进化出吃环境中毒素的细菌吗?PI建议使用计算博弈论方法来完成这一点。生物学上的对手有一个明显的弱点可以利用:进化和适应是短视的--它没有在游戏树中向前看。PI建议开发技术,以利用对手,不能预见未来的信息游戏。拟议的工作有三个知识焦点。首先,扩展Kroer和Sandholm的IJCAI-15论文,以处理近视对手的节点评估不确切,而是不确定的设置。第二,开发游戏抽象技术,利用对手的近视。第三,开发在对手是一个群体的环境中易于处理的游戏表示(例如,而不是一个人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tuomas Sandholm其他文献
Computing optimal outcomes under an expressive representation of settings with externalities
- DOI:
10.1016/j.jcss.2011.02.009 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:
- 作者:
Vincent Conitzer;Tuomas Sandholm - 通讯作者:
Tuomas Sandholm
Optimal Flow Aggregation
最优流量聚合
- DOI:
10.1007/3-540-44985-x_39 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
S. Suri;Tuomas Sandholm;P. Warkhede - 通讯作者:
P. Warkhede
Side constraints and non-price attributes in markets
- DOI:
10.1016/j.geb.2005.06.001 - 发表时间:
2006-05-01 - 期刊:
- 影响因子:
- 作者:
Tuomas Sandholm;Subhash Suri - 通讯作者:
Subhash Suri
Automated negotiation
- DOI:
10.1145/295685.295866 - 发表时间:
1999-03 - 期刊:
- 影响因子:0
- 作者:
Tuomas Sandholm - 通讯作者:
Tuomas Sandholm
Multiagent Systems A Modern Approach to Distributed Artificial Intelligence
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Tuomas Sandholm - 通讯作者:
Tuomas Sandholm
Tuomas Sandholm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tuomas Sandholm', 18)}}的其他基金
RI: Medium: Techniques for Massive-Scale Strategic Reasoning: Imperfect-Information Subgame Solving and Offering Guarantees in Simulation-Based Games
RI:中:大规模战略推理技术:不完美信息子博弈解决并在模拟游戏中提供保证
- 批准号:
2312342 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RI: Small: New Computational Techniques and Market Designs for Kidney Exchanges and Other Barter Markets
RI:小型:肾脏交换和其他易货市场的新计算技术和市场设计
- 批准号:
1718457 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RI: Small: Computational Techniques for Large Multi-Step Incomplete-Information Games
RI:小型:大型多步不完全信息博弈的计算技术
- 批准号:
1617590 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RI: Small: Expressiveness and Automated Bundling in Mechanism Design: Principles and Computational Methodologies
RI:小:机制设计中的表现力和自动捆绑:原理和计算方法
- 批准号:
1320620 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
AIR: Sophisticated Electronic Markets for TV Advertising, Powered by Novel Optimization
AIR:由新颖优化提供支持的复杂的电视广告电子市场
- 批准号:
1127832 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
ICES: Small: New and Better Markets via Automated Market Making
ICES:小型:通过自动化做市创造新的、更好的市场
- 批准号:
1101668 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RI: Mediuim: Abstraction, Equilibrium Finding, Safe Opponent Exploitation, and Robust Strategies for Imperfect-Information Games
RI:Mediuim:不完美信息博弈的抽象、均衡发现、安全对手利用和稳健策略
- 批准号:
0964579 - 财政年份:2010
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
RI: Medium: Algorithms for Robust Barter Exchanges, with Application to Kidneys
RI:媒介:稳健的易货交换算法,适用于肾脏
- 批准号:
0905390 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
ITR - (ECS+ASE) - (dmc+soc): Automated Mechanism Design
ITR - (ECS ASE) - (dmc soc):自动化机构设计
- 批准号:
0427858 - 财政年份:2004
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: Coalition Formation Among Self-Interested Computationally Limited Agents
职业:在自利的、计算受限的智能体之间形成联盟
- 批准号:
0234693 - 财政年份:2001
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似海外基金
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 10万 - 项目类别:
Studentship
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Exploiting JWST to Unveil Our Icy Universe
利用 JWST 揭示我们的冰冷宇宙
- 批准号:
2906887 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Studentship
Exploiting protein import to interrogate energy transduction through the bacterial cell envelope
利用蛋白质输入来询问通过细菌细胞包膜的能量转导
- 批准号:
BB/X016366/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Exploiting Controlled Environments for the Development of Optimised Cannabis Sativa Phenotypes for Pharmaceutical Applications - CE-CannPharm
利用受控环境开发用于制药应用的优化大麻表型 - CE-CannPharm
- 批准号:
BB/Z514470/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
ActBio: Exploiting the Parallels between Active Matter and Mechanobiology
ActBio:利用活性物质与机械生物学之间的相似之处
- 批准号:
EP/Y033981/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant