2016 Cooperative Congressional Election Study
2016 年国会选举合作研究
基本信息
- 批准号:1559125
- 负责人:
- 金额:$ 58.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-15 至 2018-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
General SummaryThe 2016 Cooperative Congressional Study (CCES) is a collaboration of over 50 different university research teams throughout the United States. Collectively this group designs and fields a large sample survey of at least 50,000 American adults. The survey measures demographics, political opinions and attitudes, and electoral behavior, especially in the congressional elections, but also in the Presidential election and state elections. The very large sample size allows researchers to have sufficient data to study state electorates as well as the entire nation. The survey is used to study who votes and why, and what explains the choices that voters make. The CCES, which started in 2006, makes available at very low cost a survey platform that is open to all. Since its inception, the project has involved more than 100 different research teams and hundreds of faculty and student researchers, and it has conducted interviews with over 250,000 American adults. The survey helps to create and sustain a network of researchers interested in state and national elections, survey design, and public opinion. Technical SummaryThe 2016 Cooperative Congressional Election Survey is developed by a consortium of research teams. Each research team that wishes to be involved in the project purchases a 1,000-person sample survey from the same firm. Each individual team determines half of the questions on its survey. The other half of the content (Common Content) is created by a design committee, drawn from the participating teams. Common Content consists of questions that every team would like to measure or questions that are of broad interest and require a very large sample. The project, thus, fields as many surveys as there are teams and also produces a single large sample survey that consists of the Common Content. The Common Content is designed by a committee in consultation with all teams involved in the survey. The survey will be fielded over the Internet, with samples constructed to be nationally representative. Each team will receive the data from its own 1,000-person survey and a dataset consisting of the 50,000+ observations from the Common Content survey. Survey data are validated using voter validation and through comparisons of state level election results to the survey results from the subsamples for each state. The data produced by this project will be a 2016 Common Content dataset, along with accompanying contextual data, as well as separate Team Content datasets and will be available on the CCES Dataverse website.
2016年国会合作研究(CCES)是美国50多个不同大学研究团队的合作。 这个小组共同设计并实地调查了至少5万名美国成年人。该调查衡量人口统计数据,政治观点和态度以及选举行为,特别是在国会选举中,但也在总统选举和州选举中。 非常大的样本量使研究人员有足够的数据来研究州选民以及整个国家。 该调查用于研究谁投票,为什么投票,以及如何解释选民的选择。 2006年启动的CCES以极低的成本提供了一个向所有人开放的调查平台。 自成立以来,该项目已涉及100多个不同的研究团队和数百名教师和学生研究人员,并与超过25万美国成年人进行了访谈。该调查有助于建立和维持一个对州和全国选举、调查设计和民意感兴趣的研究人员网络。 技术摘要2016年合作国会选举调查是由一个研究团队联盟开发的。 每个希望参与该项目的研究小组都从同一家公司购买了1,000人的抽样调查。 每个小组决定其调查中的一半问题。另一半内容(公共内容)由设计委员会创建,该委员会来自参与团队。 公共内容由每个团队都想衡量的问题或具有广泛兴趣并需要非常大样本的问题组成。 因此,该项目的实地调查数量与团队数量一样多,并且还产生了一个由共同内容组成的单一大型抽样调查。 共同内容由一个委员会与参与调查的所有团队协商设计。 调查将通过互联网进行,抽样将具有全国代表性。 每个团队都将收到来自自己的1,000人调查的数据和一个由来自共同内容调查的50,000多个观察结果组成的数据集。 调查数据的验证使用选民验证,并通过比较州一级的选举结果,从每个州的子样本的调查结果。该项目产生的数据将是一个2016年通用内容数据集,沿着上下文数据,以及单独的团队内容数据集,并将在CCES Dataverse网站上提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Ansolabehere其他文献
Constitutions, federalism, and national integration
- DOI:
10.1016/j.euroecorev.2022.104225 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Stephen Ansolabehere;M. Socorro Puy - 通讯作者:
M. Socorro Puy
Assessing (and fixing?) Election Day lines: Evidence from a survey of local election officials
- DOI:
10.1016/j.electstud.2015.10.010 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:
- 作者:
Stephen Ansolabehere;Daron Shaw - 通讯作者:
Daron Shaw
City-Defined Neighborhood Boundaries in the United States
美国城市定义的邻里边界
- DOI:
10.1038/s41597-025-05329-6 - 发表时间:
2025-06-19 - 期刊:
- 影响因子:6.900
- 作者:
Stephen Ansolabehere;Jacob R. Brown;Ryan D. Enos;Ben Shair;Tyler Simko;David Sutton - 通讯作者:
David Sutton
PSR_2300043 1..18
PSR_2300043 1..18
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shiro Kuriwaki;Stephen Ansolabehere;Angelo Dagonel;Soichiro Yamauchi - 通讯作者:
Soichiro Yamauchi
Identity voting
- DOI:
10.1007/s11127-016-0371-2 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:2.200
- 作者:
Stephen Ansolabehere;M. Socorro Puy - 通讯作者:
M. Socorro Puy
Stephen Ansolabehere的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Ansolabehere', 18)}}的其他基金
RIDIR: Collaborative Research: Bayesian analytical tools to improve survey estimates for subpopulations and small areas
RIDIR:协作研究:贝叶斯分析工具,用于改进亚人群和小区域的调查估计
- 批准号:
1926424 - 财政年份:2019
- 资助金额:
$ 58.64万 - 项目类别:
Standard Grant
The 2010 Cooperative Congressional Election Study
2010 年国会选举合作研究
- 批准号:
0924191 - 财政年份:2009
- 资助金额:
$ 58.64万 - 项目类别:
Standard Grant
The Legislative Connection in Congressional Campaign Finance: A Quasi-Experimental Study
国会竞选财务中的立法联系:一项准实验研究
- 批准号:
9709300 - 财政年份:1997
- 资助金额:
$ 58.64万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Evaluating Cooperative Intelligence in Connected Communities
职业:评估互联社区中的合作智能
- 批准号:
2339497 - 财政年份:2024
- 资助金额:
$ 58.64万 - 项目类别:
Continuing Grant
Stereocontrolled Glycosylation under Cooperative Catalysis
协同催化下的立体控制糖基化
- 批准号:
2350461 - 财政年份:2024
- 资助金额:
$ 58.64万 - 项目类别:
Standard Grant
ConSenT: Connected Sensing Techniques: Cooperative Radar Networks Using Joint Radar and Communication Waveforms
ConSenT:互联传感技术:使用联合雷达和通信波形的协作雷达网络
- 批准号:
EP/Y035933/1 - 财政年份:2024
- 资助金额:
$ 58.64万 - 项目类别:
Fellowship
Integrated Framework for Cooperative 3D Printing: Uncertainty Quantification, Decision Models, and Algorithms
协作 3D 打印的集成框架:不确定性量化、决策模型和算法
- 批准号:
2329739 - 财政年份:2024
- 资助金额:
$ 58.64万 - 项目类别:
Standard Grant
Conference: NSF Student Travel Grant for the 2024 ACM Computer Supported Cooperative Work & Social Computing (CSCW 2024)
会议:2024 年 ACM 计算机支持合作工作的 NSF 学生旅行补助金
- 批准号:
2422622 - 财政年份:2024
- 资助金额:
$ 58.64万 - 项目类别:
Standard Grant
Collaborative Research: Cooperative Processes at Surfaces: Ligand Binding at the Single Molecule Level
合作研究:表面合作过程:单分子水平的配体结合
- 批准号:
2306317 - 财政年份:2023
- 资助金额:
$ 58.64万 - 项目类别:
Standard Grant
CDS&E: Multiscale Process Intensification of Direct Catalytic Hydrogenation of CO2 to Hydrocarbons via Cooperative Tandem Catalysis
CDS
- 批准号:
2245474 - 财政年份:2023
- 资助金额:
$ 58.64万 - 项目类别:
Standard Grant
NNA Collaboratory: Collaborative Research: ACTION - Alaska Coastal Cooperative for Co-producing Transformative Ideas and Opportunities in the North
NNA 合作实验室:合作研究:行动 - 阿拉斯加沿海合作社,共同在北部产生变革性的想法和机遇
- 批准号:
2318377 - 财政年份:2023
- 资助金额:
$ 58.64万 - 项目类别:
Cooperative Agreement
NNA Collaboratory: Collaborative Research: ACTION - Alaska Coastal Cooperative for Co-producing Transformative Ideas and Opportunities in the North
NNA 合作实验室:合作研究:行动 - 阿拉斯加沿海合作社,共同在北部产生变革性的想法和机遇
- 批准号:
2318375 - 财政年份:2023
- 资助金额:
$ 58.64万 - 项目类别:
Cooperative Agreement
LEAPS-MPS: Cooperative Transformations of N-Heterocycles with Heterometallic Complexes
LEAPS-MPS:N-杂环与异金属配合物的协同转化
- 批准号:
2316582 - 财政年份:2023
- 资助金额:
$ 58.64万 - 项目类别:
Standard Grant