Collaborative Research: Big Data from Small Groups: Learning Analytics and Adaptive Support in Game-based Collaborative Learning

协作研究:来自小组的大数据:基于游戏的协作学习中的学习分析和自适应支持

基本信息

  • 批准号:
    1561655
  • 负责人:
  • 金额:
    $ 124.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

This is a research project supporting a new model of Computer Supported Collaborative Learning (CSCL) that combines the advantages of game based learning with problem based learning. Good game based learning environments combine rich scenarios with engaging activities to serendipitously provide student learning. These learning environments also provide an opportunity for players to collaborate in reaching their game goals. Good problem based learning environments provide support for the solution of complex and ill-structured problems. The combination of these two types of learning environments promise to provide the engagement and richness of game based learning with the support environment to engage students in authentic science. Both of these environments are computer based so the actions and interactions of the students and teachers are captured for analysis. Applying learning analytics to the captured data provides information on student learning for the teacher, provides learning information to the student for self-reflection and improved learning, and provides information for the system designer to improve the effectiveness of the new CSCL environment.The scientific problem domain is environmental science for middle school students. The CSCL environment is a game based learning environment that incorporates problem based learning. The interaction between the CSCL environment and the student is enhanced by the collection of data on the student based on cognitive, affective, and metacognitive states that are inferred using artificial intelligence technologies. Specific strategies are employed to help students construct explanagions, reason effectively, and become self-directed learners. Key outcomes of the project include a model of collaborative scaffolding for game based learning that is usable in classrooms to help students learn STEM content and learning analytics designed to support the teacher in the roles of guide and collaborator. A goal of the project is wide dissemination of the CSCL system.
这是一个支持计算机支持协作学习(CSCL)新模型的研究项目,该模型结合了基于游戏的学习和基于问题的学习的优点。良好的基于​​游戏的学习环境将丰富的场景与引人入胜的活动结合起来,为学生提供偶然的学习机会。这些学习环境还为玩家提供了协作实现游戏目标的机会。良好的基于​​问题的学习环境为解决复杂和结构不良的问题提供支持。这两种类型的学习环境的结合有望提供基于游戏的学习的参与度和丰富性以及支持环境,让学生参与真正的科学。这两种环境都是基于计算机的,因此学生和教师的行为和交互都会被捕获以进行分析。将学习分析应用于捕获的数据,为教师提供有关学生学习的信息,为学生提供学习信息以进行自我反思和改进学习,并为系统设计者提供信息以提高新的 CSCL 环境的有效性。科学问题领域是中学生的环境科学。 CSCL 环境是一个基于游戏的学习环境,其中包含基于问题的学习。基于使用人工智能技术推断的认知、情感和元认知状态收集学生的数据,从而增强了 CSCL 环境与学生之间的互动。采用特定的策略来帮助学生构建解释、有效推理并成为自主学习者。该项目的主要成果包括基于游戏的学习的协作支架模型,该模型可在课堂上使用,帮助学生学习 STEM 内容,以及旨在支持教师扮演指导者和协作者角色的学习分析。该项目的目标是广泛传播 CSCL 系统。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Disruptive Talk Detection in Multi-Party Dialogue within Collaborative Learning Environments with a Regularized User-Aware Network
  • DOI:
    10.18653/v1/2022.sigdial-1.47
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kyungjin Park;Hyunwoo Sohn;Wookhee Min;Bradford W. Mott;Krista D. Glazewski;C. Hmelo‐Silver;James Lester
  • 通讯作者:
    Kyungjin Park;Hyunwoo Sohn;Wookhee Min;Bradford W. Mott;Krista D. Glazewski;C. Hmelo‐Silver;James Lester
A Real-time Teacher Dashboard for a Game-based Collaborative Inquiry Learning Environment
基于游戏的协作探究学习环境的实时教师仪表板
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Lester其他文献

The Tactical Uses of Passion: An Essay on Power, Reason, and Reality. By Bailey F.G.. (Ithaca, N.Y.: Cornell University Press, 1983. Pp. 275. $29.50, cloth; $9.95, paper.)
激情的战术运用:关于权力、理性和现实的文章。
  • DOI:
  • 发表时间:
    1983
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Kirchkamp;Rosemarie Nagel;R. Sarin;A. Montuori;J. Rowe;Bradford W. Mott;James Lester;J. Scott Armstrong;Michael J. Spector;G. Burns;F. Cindio;C. Peraboni;Stefano A. Cerri;Michele Bernasconi;M. M. Galizzi;Julien Courtin;C. Gonzalez;Cyril Herry;Joseph Psotka;Sung;Emily S. Cross;Richard Ramsey;Allison C. Waters;D. Tucker;D. Erik Everhart;J. Jozefowiez;R. Chandler;Klaus P. Ebmeier;Mary E. Stewart;Nathalie Bier;Stéphane Adam;T. Meulemans;Raymond Angelo Belliotti;C. Poon;S. Schmid;K. Illeris;Charles Kalish;M. Laakso;Teemu Rajala;E. Kaila;T. Salakoski;E. Brannon
  • 通讯作者:
    E. Brannon
AI and the Future of Learning: Expert Panel Report
人工智能与学习的未来:专家小组报告
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Roschelle;James Lester;J. Fusco
  • 通讯作者:
    J. Fusco
A multi-level growth modeling approach to measuring learner attention with metacognitive pedagogical agents
使用元认知教学代理衡量学习者注意力的多层次增长建模方法
  • DOI:
    10.1007/s11409-023-09336-z
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Megan D. Wiedbusch;James Lester;R. Azevedo
  • 通讯作者:
    R. Azevedo
Affective Dynamics and Cognition During Game-Based Learning
基于游戏的学习过程中的情感动态和认知
  • DOI:
    10.1109/taffc.2022.3210755
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Elizabeth B. Cloude;Daryn A. Dever;Debbie L. Hahs;Andrew Emerson;R. Azevedo;James Lester
  • 通讯作者:
    James Lester
Qualitative aspects of breathlessness in health and disease
健康和疾病中呼吸困难的定性方面
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Jaclyn A. Smith;Paul Albert;Enrica Bertella;James Lester;Sandy Jack;Peter M.A. Calverley
  • 通讯作者:
    Peter M.A. Calverley

James Lester的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Lester', 18)}}的其他基金

ExplainIt: Improving Student Learning with Explanation-based Classroom Response Systems
ExplainIt:通过基于解释的课堂响应系统改善学生的学习
  • 批准号:
    2111473
  • 财政年份:
    2021
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant
AI Institute for Engaged Learning
人工智能参与学习研究所
  • 批准号:
    2112635
  • 财政年份:
    2021
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Cooperative Agreement
EAGER: Collaborative Research: Building Capacity for K-12 Artificial Intelligence Education Research
EAGER:协作研究:K-12 人工智能教育研究能力建设
  • 批准号:
    1938778
  • 财政年份:
    2019
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant
Collaborative Research: PrimaryAI: Integrating Artificial Intelligence into Upper Elementary Science with Immersive Problem-Based Learning
合作研究:PrimaryAI:通过基于问题的沉浸式学习将人工智能融入高年级基础科学
  • 批准号:
    1934153
  • 财政年份:
    2019
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant
Supporting Student Planning with Open Learner Models in Middle Grades Science
通过中年级科学的开放学习者模型支持学生规划
  • 批准号:
    1761178
  • 财政年份:
    2018
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF: Augmented Cognition for Teaching: Transforming Teacher Work with Intelligent Cognitive Assistants
合作研究:FW-HTF:增强教学认知:利用智能认知助手改变教师工作
  • 批准号:
    1840120
  • 财政年份:
    2018
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant
Multimodal Visitor Analytics: Investigating Naturalistic Engagement with Interactive Tabletop Science Exhibits
多模式访客分析:研究交互式桌面科学展览的自然参与
  • 批准号:
    1713545
  • 财政年份:
    2018
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Continuing Grant
Improving Science Problem Solving with Adaptive Game-Based Reflection Tools
使用基于游戏的自适应反思工具提高科学问题的解决能力
  • 批准号:
    1661202
  • 财政年份:
    2017
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Continuing Grant
ENGAGE: A Game-based Curricular Strategy for Infusing Computational Thinking into Middle School Science
ENGAGE:将计算思维融入中学科学的基于游戏的课程策略
  • 批准号:
    1640141
  • 财政年份:
    2016
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant
Collaborative Research: PRIME: Engaging STEM Undergraduate Students in Computer Science with Intelligent Tutoring Systems
合作研究:PRIME:利用智能辅导系统让 STEM 本科生学习计算机科学
  • 批准号:
    1626235
  • 财政年份:
    2016
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant
Belmont Forum Collaborative Research: Climate-Induced Migration in Africa and Beyond: Big Data and Predictive Analytics
贝尔蒙特论坛合作研究:非洲及其他地区气候引起的移民:大数据和预测分析
  • 批准号:
    2310908
  • 财政年份:
    2023
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Continuing Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226347
  • 财政年份:
    2023
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226348
  • 财政年份:
    2023
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Design-Based Optimal Subdata Selection Using Mixture-of-Experts Models to Account for Big Data Heterogeneity
协作研究:基于设计的最佳子数据选择,使用专家混合模型来解释大数据异构性
  • 批准号:
    2210576
  • 财政年份:
    2022
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Mode Apparatus to Resolve the Discrepancy Concerning Big G
合作研究:解决大G差异的多模式装置
  • 批准号:
    2207796
  • 财政年份:
    2022
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: REU Site: BigDataX: From theory to practice in Big Data computing at eXtreme scales
合作研究:REU 网站:BigDataX:极限规模大数据计算从理论到实践
  • 批准号:
    2150500
  • 财政年份:
    2022
  • 资助金额:
    $ 124.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了