CRII: SCH: Characterizing, Modeling and Evaluating Brain Dynamics
CRII:SCH:大脑动力学特征描述、建模和评估
基本信息
- 批准号:1564892
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2017-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Brain dynamics, which reflects the healthy or pathological states of the brain with quantifiable, reproducible, and indicative dynamics values, remains the least understood and studied area of brain science despite its intrinsic and critical importance to the brain. Unlike other brain information such as the structural and sequential dimensions that have all been extensively studied with models and methods successfully developed, the 5th dimension, dynamics, has only very recently started receiving systematic analysis from the research community. The state-of-the-art models suffer from several fundamental limitations that have critically inhibited the accuracy and reliability of the dynamic parameters' computation. First, dynamic parameters are derived from each voxel of the brain spatially independently, and thus miss the fundamental spatial information since the brain is ?connected?. Second, current models rely solely on single-patient data to estimate the dynamic parameters without exploiting the big medical data consisting of billions of patients with similar diseases. This project aims to develop a framework for data-driven brain dynamics characterization, modeling and evaluation that includes the new concept of a 5th dimension - brain dynamics - to complement the structural 4-D brain for a complete picture. The project studies how dynamic computing of the brain as a distinct problem from the image reconstruction and de-noising of convention models, and analyzes the impact of different models for the dynamics analysis. A data-driven, scalable framework will be developed to depict the functionality and dynamics of the brain. This framework enables full utilization of 4-D brain spatio-temporal data and big medical data, resulting in accurate estimations of the dynamics of the brain that are not reflected in the voxel-independent models and the single patient models. The model and framework will be evaluated on both simulated and real dual-dose computed tomography perfusion image data and then compared with the state-of-the-art methods for brain dynamics computation by leveraging collaborations with Florida International University Herbert Wertheim College of Medicine, NewYork-Presbyterian Hospital / Weill Cornell Medical College (WCMC) and Northwell School of Medicine at Hofstra University. The proposed research will significantly advance the state-of-the-art in quantifying and analyzing brain structure and dynamics, and the interplay between the two for brain disease diagnosis, including both the acute and chronic diseases. This unified approach brings together fields of Computer Science, Bioengineering, Cognitive Neuroscience and Neuroradiology to create a framework for precisely measuring and analyzing the 5th dimension - brain dynamics - integrated with the 4-D brain with three dimensions from spatial data and one dimension from temporal data. Results from the project will be incorporated into graduate-level multi-disciplinary courses in machine learning, computational neuroscience and medical image analysis. This project will open up several new research directions in the domain of brain analysis, and will educate and nurture young researchers, advance the involvement of underrepresented minorities in computer science research, and equip them with new insights, models and tools for developing future research in brain dynamics in a minority serving university.
脑动力学以可量化的、可再现的和指示性的动力学值反映大脑的健康或病理状态,尽管其对大脑具有内在的和至关重要的重要性,但仍然是脑科学中理解和研究最少的领域。与其他大脑信息(如结构和顺序维度)不同,这些信息都已通过成功开发的模型和方法进行了广泛的研究,第五维,动力学,直到最近才开始接受研究界的系统分析。最先进的模型受到几个基本的限制,严重抑制了动态参数计算的准确性和可靠性。首先,动态参数是从每个体素的大脑空间独立,从而错过了基本的空间信息,因为大脑是?有联系?其次,目前的模型仅依赖于单个患者数据来估计动态参数,而没有利用由数十亿患有类似疾病的患者组成的大医疗数据。该项目旨在开发一个数据驱动的大脑动力学表征,建模和评估框架,其中包括第五维度的新概念-大脑动力学-以补充结构4-D大脑的完整图片。该项目研究了如何将大脑的动态计算作为一个与常规模型的图像重建和去噪不同的问题,并分析了不同模型对动力学分析的影响。将开发一个数据驱动的可扩展框架来描述大脑的功能和动态。该框架能够充分利用4-D大脑时空数据和大的医疗数据,从而准确估计在体素无关模型和单个患者模型中没有反映的大脑动态。该模型和框架将在模拟和真实的双剂量计算机断层扫描灌注图像数据上进行评估,然后通过与佛罗里达国际大学赫伯特韦特海姆医学院、纽约长老会医院/威尔康奈尔医学院(WCMC)和霍夫斯特拉大学诺斯韦尔医学院的合作,与最先进的脑动力学计算方法进行比较。拟议的研究将大大推进量化和分析大脑结构和动力学的最新技术,以及两者之间的相互作用,用于大脑疾病诊断,包括急性和慢性疾病。这种统一的方法汇集了计算机科学,生物工程,认知神经科学和神经放射学领域,以创建一个框架,用于精确测量和分析第五维-大脑动力学-与四维大脑集成,三维来自空间数据,一维来自时间数据。该项目的成果将被纳入机器学习、计算神经科学和医学图像分析的研究生级多学科课程。该项目将在大脑分析领域开辟几个新的研究方向,并将教育和培养年轻的研究人员,促进代表性不足的少数民族参与计算机科学研究,并为他们提供新的见解,模型和工具,以发展未来的研究在少数民族服务的大学大脑动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruogu Fang其他文献
BrainFounder: Towards Brain Foundation Models for Neuroimage Analysis
BrainFounder:迈向神经图像分析的大脑基础模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Joseph Cox;Peng Liu;Skylar E. Stolte;Yunchao Yang;Kang Liu;Kyle B. See;Huiwen Ju;Ruogu Fang - 通讯作者:
Ruogu Fang
Building tDCS Digital Twins: AI-Powered Prediction of Personalized Electrical Field Maps from MRI
构建 tDCS 数字孪生:基于 MRI 的个性化电场图的人工智能驱动预测
- DOI:
10.1016/j.brs.2024.12.1101 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.400
- 作者:
Skylar E. Stolte;Aprinda Indahlastari;Alejandro Albizu;Adam J. Woods;Ruogu Fang - 通讯作者:
Ruogu Fang
Robust Low-Dose CT Perfusion Deconvolution via Tensor Total-Variation Regularization.
- DOI:
10.1109/tmi.2015.2405015 - 发表时间:
2015-07 - 期刊:
- 影响因子:10.6
- 作者:
Ruogu Fang;Shaoting Zhang;Tsuhan Chen;Sanelli PC - 通讯作者:
Sanelli PC
BrainSegFounder: Towards 3D foundation models for neuroimage segmentation
大脑分割创始人:迈向神经影像分割的三维基础模型
- DOI:
10.1016/j.media.2024.103301 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:11.800
- 作者:
Joseph Cox;Peng Liu;Skylar E. Stolte;Yunchao Yang;Kang Liu;Kyle B. See;Huiwen Ju;Ruogu Fang - 通讯作者:
Ruogu Fang
Learning on Forecasting HIV Epidemic Based on Individuals' Contact Networks
基于个人接触网络预测艾滋病疫情的学习
- DOI:
10.5220/0012375400003657 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Chaoyue Sun;Yiyang Liu;Christina Parisi;Rebecca J Fisk;Marco Salemi;Ruogu Fang;Brandi Danforth;M. Prosperi;S. Marini - 通讯作者:
S. Marini
Ruogu Fang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruogu Fang', 18)}}的其他基金
NCS-FO: Brain-Informed Goal-Oriented and Bidirectional Deep Emotion Inference
NCS-FO:大脑知情的目标导向双向深度情感推理
- 批准号:
2318984 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
III: Small: Modeling Multi-Level Connectivity of Brain Dynamics
III:小:模拟大脑动力学的多级连接
- 批准号:
1908299 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SCH: Characterizing, Modeling and Evaluating Brain Dynamics
CRII:SCH:大脑动力学特征描述、建模和评估
- 批准号:
1758430 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
基于生物类芬顿的LA/Sch@BB耦合系统去除水产养殖尾水中抗生素的效果与机制研究
- 批准号:42377063
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
具有低聚合收缩和生态防龋双功能的埃洛石纳米管@SCH-79797改性复合树脂的研究
- 批准号:82170950
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
一类稳态Schödinger-Poisson-Slater方程标准化解的研究
- 批准号:11501137
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
锥中修改的Poisson-Sch积分在无穷远点处的渐近行为及其应用
- 批准号:U1304102
- 批准年份:2013
- 资助金额:30.0 万元
- 项目类别:联合基金项目
酵母中Sch9蛋白激酶信号途径调控衰老的分子机理
- 批准号:30671181
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Open Access Block Award 2024 - London Sch of Hygiene & Tropic. Medicine
2024 年开放访问区块奖 - 伦敦卫生学院
- 批准号:
EP/Z532368/1 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Research Grant
CRII: SCH: Towards Smart Patient Flow Management: Real-time Inpatient Length of Stay Modeling and Prediction
CRII:SCH:迈向智能患者流程管理:实时住院患者住院时间建模和预测
- 批准号:
2246158 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306660 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
- 批准号:
2306708 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306790 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: Computer Vision Algorithms to Detect Tics In Patients with Tourette Syndrome
SCH:用于检测抽动秽语综合征患者抽动的计算机视觉算法
- 批准号:
10817272 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
SCH: A Novel Bias-mitigated Multimodal Oxygen Monitor
SCH:一种新型的消除偏差的多模式氧监测仪
- 批准号:
10816771 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
SCH: Neonatal Facial Coding for Pain Recognition Monitoring System (PRAMS)
SCH:新生儿面部编码疼痛识别监测系统 (PRAMS)
- 批准号:
2205472 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant