Dispersion in Harmonic Analysis: Geometry and Boundary Conditions

谐波分析中的色散:几何和边界条件

基本信息

  • 批准号:
    1565436
  • 负责人:
  • 金额:
    $ 16.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

This mathematics research project is in the area of Fourier analysis: this is a branch of mathematics that plays an important role in the development of mathematical and physical theories. One aspect of the research pursued in this project provides the mathematical foundation for the study of light and sound waves. Fourier analysis continues to play a significant role in deepening one's understanding of the equations that model this behavior. In particular, these investigations yield further insight as to how the presence of a hard boundary surface influences the development of waves. For example, if one listens to the symphony in an auditorium, the sounds heard are affected by the manner in which the acoustic waves reflect off the walls. In this sense, it can be important to understand how the shape of the hall influences its acoustics. While this is, of course, a classical problem, there is more to be understood in terms of how these interactions influence dispersive properties. Moreover, this line of work is important in the analysis of closely related nonlinear equations arising from fiber optics, relativity, and water waves, where there is much to be done in understanding and limiting the various types of instabilities that can occur. A second aspect of this research project seeks to understand the link between geometry and the behavior of vibrational modes. This is closely related to so-called Chladni plates, where one vibrates a metal plate with sand on it and studies the patterns formed by the accumulation of sand, corresponding to the lines on which the plate does not move. Here it is interesting to consider how the shape of the plate influences the patterns that evolve and to estimate their length. These investigations are closely related to themes in quantum chaos and semiclassical analysis.This mathematical research project in harmonic analysis seeks to understand dispersive properties of light, sound, and quantum waves in various settings such as in curved backgrounds, in nonhomogeneous media, and in the presence of boundary conditions. These dispersive properties are, in turn, influenced by the behavior of paths of least action, so the approaches here rely partially on methods in microlocal analysis, where one seeks to understand such wave propagation in phase space. This wave behavior can be modeled by solutions to partial differential equations, possibly satisfying certain boundary conditions. Of particular interest is to understand how dispersive properties affect basic regularity estimates for solutions to these equations. These regularity estimates actually stem from Fourier restriction theory, and in particular from the classical theorems of Stein, Tomas, and Strichartz. While the non-Euclidean character of these problems means that the classical Fourier transform is not directly applicable, harmonic analysis is nonetheless fundamental to the proposed research. Indeed, the common methods employed by the principal investigator for understanding wave propagation such as Fourier integral operators, the Hadamard parametrix, and wave-packet methods, rely on Fourier analysis to a strong degree. Moreover, the oscillatory integrals that arise in applying these methods are very close to those encountered in harmonic analysis, hence the research here deepens our understanding of the classical theory.
这个数学研究项目是在傅立叶分析领域:这是数学的一个分支,在数学和物理理论的发展中发挥着重要作用。在这个项目中进行的研究的一个方面提供了光和声波的研究的数学基础。傅立叶分析继续发挥重要作用,加深人们对模型这种行为的方程的理解。特别是,这些调查产生进一步的洞察力,如何存在的硬边界面影响波的发展。例如,如果一个人在礼堂里听交响乐,那么听到的声音会受到声波在墙壁上反射的方式的影响。从这个意义上说,了解大厅的形状如何影响其声学效果是很重要的。当然,这是一个经典的问题,但在这些相互作用如何影响色散特性方面还有更多的问题需要理解。此外,这条线的工作是重要的,在分析密切相关的非线性方程所产生的光纤,相对论,和水波,有很多工作要做的理解和限制各种类型的不稳定性,可能会发生。 这个研究项目的第二个方面是试图了解几何形状和振动模式行为之间的联系。 这与所谓的Chladni板块密切相关,其中一个振动金属板,上面有沙子,并研究由沙子积累形成的图案,对应于板块不移动的线条。 在这里,考虑板块的形状如何影响演变的模式并估计其长度是有趣的。 这些研究与量子混沌和半经典分析的主题密切相关。谐波分析的数学研究项目旨在了解光,声音和量子波在各种设置中的色散特性,例如在弯曲背景中,在非均匀介质中,以及在存在边界条件的情况下。 这些色散特性反过来又受到最小作用路径行为的影响,因此这里的方法部分依赖于微局部分析中的方法,其中人们试图理解相空间中的波传播。 这种波动行为可以通过偏微分方程的解来模拟,可能满足某些边界条件。 特别感兴趣的是要了解如何分散性能影响基本的规律性估计这些方程的解决方案。 这些正则性估计实际上来自傅立叶限制理论,特别是来自斯坦因、托马斯和哈茨的经典定理。 虽然这些问题的非欧几里德性质意味着经典的傅里叶变换是不直接适用的,谐波分析仍然是基本的拟议的研究。 事实上,首席研究员用来理解波传播的常用方法,如傅立叶积分算子、阿达玛参数和波包方法,都在很大程度上依赖于傅立叶分析。此外,在应用这些方法中出现的振荡积分是非常接近的调和分析中遇到的,因此,这里的研究加深了我们对经典理论的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Blair其他文献

Effect of pharmacological interventions for the treatment of people with post‐COVID‐19 condition: A rapid review
药物干预对治疗 COVID-19 后病情患者的效果:快速回顾
  • DOI:
    10.1002/cesm.12001
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Saif‐Ur‐Rahman;K. Kothari;C. Sadlier;F. Moriarty;A. Movsisyan;S. Whelan;P. Taneri;Matthew Blair;G. Guyatt;D. Devane
  • 通讯作者:
    D. Devane
Shear thickening in dense suspensions driven by particle interlocking
由颗粒互锁驱动的稠密悬浮液中的剪切增稠
  • DOI:
    10.1017/jfm.2022.720
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Matthew Blair;C. Ness
  • 通讯作者:
    C. Ness
Plantar pressure variability as a measure of cognitive load during gait
  • DOI:
    10.1016/j.gaitpost.2024.11.017
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Blair;Jerome Hausselle
  • 通讯作者:
    Jerome Hausselle
Solvent selection, sustainability analysis, technoeconomic evaluation and optimisation of batch cooling crystallisation for flurbiprofen production
氟比洛芬生产中分批冷却结晶的溶剂选择、可持续性分析、技术经济评估和优化
  • DOI:
    10.1016/j.compchemeng.2025.109116
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Matthew Blair;Dimitrios I. Gerogiorgis
  • 通讯作者:
    Dimitrios I. Gerogiorgis

Matthew Blair的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Blair', 18)}}的其他基金

Fourier Analysis on Bounded and Exterior Domains
有界域和外部域的傅里叶分析
  • 批准号:
    1301717
  • 财政年份:
    2013
  • 资助金额:
    $ 16.41万
  • 项目类别:
    Continuing Grant
Fourier Analysis on Bounded and Exterior Domains
有界域和外部域的傅里叶分析
  • 批准号:
    1001529
  • 财政年份:
    2010
  • 资助金额:
    $ 16.41万
  • 项目类别:
    Standard Grant
Fourier Analysis on Bounded Domains
有界域的傅里叶分析
  • 批准号:
    0801211
  • 财政年份:
    2008
  • 资助金额:
    $ 16.41万
  • 项目类别:
    Standard Grant

相似国自然基金

算子方法在Harmonic数恒等式中的应用
  • 批准号:
    11201241
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Ricci-Harmonic流的长时间存在性
  • 批准号:
    11126190
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 16.41万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 16.41万
  • 项目类别:
    Standard Grant
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    2349756
  • 财政年份:
    2024
  • 资助金额:
    $ 16.41万
  • 项目类别:
    Standard Grant
Some problems in harmonic analysis
谐波分析中的一些问题
  • 批准号:
    2350101
  • 财政年份:
    2024
  • 资助金额:
    $ 16.41万
  • 项目类别:
    Standard Grant
Conference: Madison Lectures in Harmonic Analysis
会议:麦迪逊谐波分析讲座
  • 批准号:
    2337344
  • 财政年份:
    2024
  • 资助金额:
    $ 16.41万
  • 项目类别:
    Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 16.41万
  • 项目类别:
    Standard Grant
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
  • 批准号:
    2348797
  • 财政年份:
    2024
  • 资助金额:
    $ 16.41万
  • 项目类别:
    Standard Grant
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
  • 批准号:
    2236493
  • 财政年份:
    2023
  • 资助金额:
    $ 16.41万
  • 项目类别:
    Continuing Grant
Conference: Harmonic and Complex Analysis: Modern and Classical
会议:调和与复分析:现代与古典
  • 批准号:
    2308417
  • 财政年份:
    2023
  • 资助金额:
    $ 16.41万
  • 项目类别:
    Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    $ 16.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了