Nonlinear Geometric Partial Differential Equations: Entire Solutions and Regularity

非线性几何偏微分方程:全解和正则性

基本信息

  • 批准号:
    1600658
  • 负责人:
  • 金额:
    $ 29.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Some of the most important problems in mathematics and physics are related to the understanding of singularities. Singularities can range anywhere from black holes in astrophysics to turbulence in fluid mechanics to the accumulation of cancer cells in biomedical research. Such physical phenomena are often described by differential equations that involve time and space. Studying the qualitative behavior of the solutions of these equations frequently deepens one's understanding of the related physical problems. To study a singularity of a solution one uses a so-called blow-up procedure that allows one to focus attention near the singularity and to exploit the scaling properties that the differential equation enjoys. Because of the change in the scaling of space and time, this process leads to a new solution that is defined for all space and time, in other words to a "global solution." The classification of global solutions, when possible, sheds new insight into the singularity and thus into the underlying physical phenomenon. This project addresses the questions of existence, uniqueness, and qualitative behavior of global solutions to nonlinear geometric elliptic and parabolic partial differential equations. Emphasis is given to the classification of ancient solutions, the construction of new ancient solutions from the gluing of solitons, and the study of fully nonlinear extrinsic geometric flows in the complete noncompact case. The interplay between analytical and geometric techniques will be a crucial factor in carrying out the research. The project links a wide range of active fields of mathematics, including nonlinear partial differential equations, differential geometry, and classical analysis. The principal investigator also intends to seek applications of the mathematical results to other disciplines such as quantum field theory and image processing. Results will be disseminated to the research community at various meetings and by publication of research articles. Special emphasis will be given to the training of Ph.D. students.
数学和物理学中的一些最重要的问题与对奇点的理解有关。奇点可以出现在任何地方,从天体物理学中的黑洞到流体力学中的湍流,再到生物医学研究中癌细胞的积累。这类物理现象通常用涉及时间和空间的微分方程来描述。研究这些方程解的定性行为常常加深人们对相关物理问题的理解。为了研究一个解的奇点,人们使用了一个所谓的爆破过程,它允许人们将注意力集中在奇点附近,并利用微分方程所具有的标度性质。由于空间和时间尺度的变化,这一过程导致了一个新的解决方案,这是为所有空间和时间定义的,换句话说,导致了一个“全球解决方案”。“在可能的情况下,整体解的分类为奇点提供了新的见解,从而为潜在的物理现象提供了新的见解。 本计画探讨非线性几何椭圆型与抛物型偏微分方程整体解的存在性、唯一性与定性行为。重点是古代的解决方案的分类,建设新的古代解决方案从胶合的孤子,和研究完全非线性的外部几何流在完全非紧的情况下。分析和几何技术之间的相互作用将是进行研究的一个关键因素。该项目连接了广泛的数学活跃领域,包括非线性偏微分方程,微分几何和经典分析。首席研究员还打算将数学结果应用于其他学科,如量子场论和图像处理。研究结果将在各种会议上和通过发表研究文章向研究界传播。将特别重视博士生的培养。学生

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panagiota Daskalopoulos其他文献

Panagiota Daskalopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panagiota Daskalopoulos', 18)}}的其他基金

Nonlinear Geometric Flows: Ancient Solutions, Non-Compact Surfaces, and Regularity
非线性几何流:古老的解、非紧曲面和正则性
  • 批准号:
    1900702
  • 财政年份:
    2019
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Continuing Grant
Nonlinear parabolic equations and related geometric problems
非线性抛物线方程及相关几何问题
  • 批准号:
    1266172
  • 财政年份:
    2013
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Continuing Grant
Workshop on Probability, Control and Finance
概率、控制与金融研讨会
  • 批准号:
    1204036
  • 财政年份:
    2012
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Standard Grant
Nonlinear elliptic and parabolic problems in analysis and geometry
分析和几何中的非线性椭圆和抛物线问题
  • 批准号:
    1001116
  • 财政年份:
    2010
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Standard Grant
Nonlinear Elliptic and Parabolic Problems
非线性椭圆和抛物线问题
  • 批准号:
    0701045
  • 财政年份:
    2007
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Continuing Grant
Nonlinear Diffusion Equations and Free-Boundary Problems
非线性扩散方程和自由边界问题
  • 批准号:
    0401126
  • 财政年份:
    2004
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Continuing Grant
Nonlinear Parabolic Equations: Free-Boundary Problems and Singular Behavior
非线性抛物型方程:自由边界问题和奇异行为
  • 批准号:
    0312006
  • 财政年份:
    2002
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Continuing Grant
Nonlinear Parabolic Equations: Free-Boundary Problems and Singular Behavior
非线性抛物型方程:自由边界问题和奇异行为
  • 批准号:
    0102252
  • 财政年份:
    2001
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Continuing Grant
Nonlinear Degenerate Parabolic Problems and Related Topics
非线性简并抛物线问题及相关主题
  • 批准号:
    9801304
  • 财政年份:
    1998
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Standard Grant
U.S.-Chile Cooperative Research: Nonlinear Degenerate Parabolic Problems
美国-智利合作研究:非线性简并抛物线问题
  • 批准号:
    9802406
  • 财政年份:
    1998
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Geometric Methods for Singular Solutions to Nonlinear Hyperbolic Partial Differential Equations
非线性双曲偏微分方程奇异解的几何方法
  • 批准号:
    2054184
  • 财政年份:
    2021
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Standard Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
  • 批准号:
    2105460
  • 财政年份:
    2021
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Standard Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2021
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2020
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2019
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Discovery Grants Program - Individual
Fully Nonlinear Geometric Partial Differential Equations
全非线性几何偏微分方程
  • 批准号:
    1809582
  • 财政年份:
    2018
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Continuing Grant
Rigorous computations of solutions of nonlinear geometric partial differential equations
非线性几何偏微分方程解的严格计算
  • 批准号:
    526393-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 29.89万
  • 项目类别:
    University Undergraduate Student Research Awards
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
  • 批准号:
    1811034
  • 财政年份:
    2018
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Standard Grant
Geometric Measure Theory, Image Processing, and Nonlinear Partial Differential Equations
几何测度理论、图像处理和非线性偏微分方程
  • 批准号:
    1813695
  • 财政年份:
    2018
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Standard Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2018
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了