Nonlinear Geometric Flows: Ancient Solutions, Non-Compact Surfaces, and Regularity

非线性几何流:古老的解、非紧曲面和正则性

基本信息

  • 批准号:
    1900702
  • 负责人:
  • 金额:
    $ 54.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Some of the most important problems in mathematics and physics are related to the understanding of singularities. These are anomalies in the behavior of a physical quantity where the mathematical expressions that are used to measure such quantities break down. It may be related to the understanding of black holes or turbulence to the accumulation of cancer cells. These physical phenomena are often described via a differential equation which involves time and space. Studying the qualitative behavior of the solutions of such equations often results in a better understanding of the related physical problem. To capture a singularity one uses a blow up procedure which allows one to focus near the potential singularity and use the scaling properties of the differential equation involved. Because of the change in the scaling of space and time, the new solution after the blow up is defined for all space and time -- in other words it is a "global solution". The classification of such solutions, when possible, sheds new insight into the singularity analysis and the related physical problem.This project addresses the questions of existence, uniqueness and qualitative behavior of global solutions to nonlinear geometric elliptic and parabolic partial differential equations. Emphasis is given to the classification of ancient solutions and the study of singularities. The interplay between analytical and geometric techniques will be crucial for the resolution of the proposed research activities. The project links a wide range of active fields of mathematics, in particular nonlinear partial differential equations, geometry and classical analysis. The PI intends to study the applications of the mathematical problems to other disciplines such as quantum field theory and image processing. Results will be disseminated to the research community at various meetings and by publication of research articles. Special emphasis will be given to the training of PhD students and the encouragement of minorities and women to pursue a successful career in mathematics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学和物理学中的一些最重要的问题与对奇点的理解有关。这些是物理量行为中的异常,其中用于测量这些量的数学表达式被打破。它可能与黑洞或湍流的理解有关,以积累癌细胞。这些物理现象通常通过涉及时间和空间的微分方程来描述。 研究这类方程解的定性行为,往往能更好地理解相关的物理问题。为了捕捉一个奇点,人们使用了爆破过程,它允许人们关注潜在的奇点附近,并使用所涉及的微分方程的标度特性。 由于空间和时间尺度的变化,爆破后的新解是为所有空间和时间定义的-换句话说,它是一个“全局解”。 这类解的分类,在可能的情况下,为奇异性分析和相关的物理问题提供了新的视角。本项目研究非线性几何椭圆和抛物型偏微分方程整体解的存在性、唯一性和定性行为。重点是古解的分类和奇点的研究。分析技术和几何技术之间的相互作用对于解决拟议的研究活动至关重要。该项目连接了广泛的数学活跃领域,特别是非线性偏微分方程,几何和经典分析。PI打算研究数学问题在其他学科中的应用,如量子场论和图像处理。研究结果将在各种会议上和通过发表研究文章向研究界传播。 该奖项将特别强调博士生的培训和鼓励少数民族和妇女在数学领域取得成功。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inverse mean curvature evolution of entire graphs
Uniqueness of entire graphs evolving by mean curvature flow.
通过平均曲率流演变的整个图的唯一性。
Uniqueness of compact ancient solutions to the higher-dimensional Ricci flow
The $$Q_k$$ flow on complete non-compact graphs
Convergence of curve shortening flow to translating soliton
曲线缩短流向平移孤子的收敛
  • DOI:
    10.1353/ajm.2021.0032
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Choi, Beomjun;Choi, Kyeongsu;Daskalopoulos, Panagiota
  • 通讯作者:
    Daskalopoulos, Panagiota
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panagiota Daskalopoulos其他文献

Panagiota Daskalopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panagiota Daskalopoulos', 18)}}的其他基金

Nonlinear Geometric Partial Differential Equations: Entire Solutions and Regularity
非线性几何偏微分方程:全解和正则性
  • 批准号:
    1600658
  • 财政年份:
    2016
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
Nonlinear parabolic equations and related geometric problems
非线性抛物线方程及相关几何问题
  • 批准号:
    1266172
  • 财政年份:
    2013
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
Workshop on Probability, Control and Finance
概率、控制与金融研讨会
  • 批准号:
    1204036
  • 财政年份:
    2012
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
Nonlinear elliptic and parabolic problems in analysis and geometry
分析和几何中的非线性椭圆和抛物线问题
  • 批准号:
    1001116
  • 财政年份:
    2010
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
Nonlinear Elliptic and Parabolic Problems
非线性椭圆和抛物线问题
  • 批准号:
    0701045
  • 财政年份:
    2007
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
Nonlinear Diffusion Equations and Free-Boundary Problems
非线性扩散方程和自由边界问题
  • 批准号:
    0401126
  • 财政年份:
    2004
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
Nonlinear Parabolic Equations: Free-Boundary Problems and Singular Behavior
非线性抛物型方程:自由边界问题和奇异行为
  • 批准号:
    0312006
  • 财政年份:
    2002
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
Nonlinear Parabolic Equations: Free-Boundary Problems and Singular Behavior
非线性抛物型方程:自由边界问题和奇异行为
  • 批准号:
    0102252
  • 财政年份:
    2001
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
Nonlinear Degenerate Parabolic Problems and Related Topics
非线性简并抛物线问题及相关主题
  • 批准号:
    9801304
  • 财政年份:
    1998
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
U.S.-Chile Cooperative Research: Nonlinear Degenerate Parabolic Problems
美国-智利合作研究:非线性简并抛物线问题
  • 批准号:
    9802406
  • 财政年份:
    1998
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Conference: Geometric Flows and Relativity
会议:几何流和相对论
  • 批准号:
    2348273
  • 财政年份:
    2024
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
Geometric flows and analysis on metric spaces
几何流和度量空间分析
  • 批准号:
    2305397
  • 财政年份:
    2023
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
Conference: Geometric flows and applications
会议:几何流及应用
  • 批准号:
    2316597
  • 财政年份:
    2023
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
Study on geometric structures of curvature flows and submanifolds
曲率流和子流形的几何结构研究
  • 批准号:
    22K03303
  • 财政年份:
    2022
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The exponential map for flows and its application in geometric control theory
流动指数图及其在几何控制理论中的应用
  • 批准号:
    RGPIN-2019-04554
  • 财政年份:
    2022
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis on singularities of higher order geometric gradient flows
高阶几何梯度流的奇点分析
  • 批准号:
    21H00990
  • 财政年份:
    2021
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The exponential map for flows and its application in geometric control theory
流动指数图及其在几何控制理论中的应用
  • 批准号:
    RGPIN-2019-04554
  • 财政年份:
    2021
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic Behaviour of Geometric Flows
几何流的渐近行为
  • 批准号:
    2580844
  • 财政年份:
    2021
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Studentship
Ancient Solutions to Geometric Flows
几何流的古代解决方案
  • 批准号:
    2105026
  • 财政年份:
    2021
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
Ancient Solutions and Singularities in Geometric Flows
几何流中的古代解和奇点
  • 批准号:
    2105508
  • 财政年份:
    2021
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了