Nonlinear Parabolic Equations: Free-Boundary Problems and Singular Behavior

非线性抛物型方程:自由边界问题和奇异行为

基本信息

  • 批准号:
    0102252
  • 负责人:
  • 金额:
    $ 10.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2003-02-28
  • 项目状态:
    已结题

项目摘要

The major objectives of this proposal are concerned with the study of nonlinear parabolic equations related to degenerate and singular diffusion, in connection with more complex problems of differential geometry, including the Gauss curvature flow and the Ricci flowand with physical applications such as diffusion in porous media and thin liquid film dynamics.One specific area which will be investigated concerns with the regularity and geometry of interfaces in degenerate diffusion: this long term project which was initiated in 1997, has the objective of determining the connection between the geometry and regularity of the interfaces in degenerate diffusion. Another specific area of the main objectives concerns the study fast and super-diffusive nonlinear parabolic problems: this project has the objective of studying several new important phenomena related to the well-posedness and vanishing profile of solutions to singular diffusion equations arising in physical applications and differential geometry. In particular,it involves the study of the vanishing profile of the maximal solutions to the Ricci flow and the geometric implications of these results.The non-linear equations to be studied under this proposal form the basic concepts of many applications which deem to be important to technology and the society at large. The purification of materials, from chemicals to petroleum and even water, is often achieved by diffusion through filters. The purification filters are the porous media described in the proposal. Thin film dynamics and the Van der Waals forces operating between thin layers are described by singular quasilinear equations of super-fast diffusion. The dynamics of population growth, polymer chain growth, including cross linking and high rate growth of biomolecules, are also non-linear phenomena amiable to our basic studies. The interesting problem of the expanding universe and other cosmological phenomena seem to be governed by nonlinear dynamics, which in certain cases are applications of the more complex problems described here.
这项建议的主要目的是研究与退化和奇异扩散有关的非线性抛物型方程,结合更复杂的微分几何问题,包括高斯曲率流和Ricci流,以及物理应用,如多孔介质中的扩散和薄膜动力学。将研究的一个特定领域涉及简并扩散中界面的正则性和几何:这个长期项目始于1997年,目的是确定简并扩散中界面的几何和正则性之间的联系。另一个主要目标的具体领域涉及研究快速和超扩散的非线性抛物问题:这个项目的目标是研究几个新的重要现象,这些现象与物理应用和微分几何中出现的奇异扩散方程的解的适定性和消失轮廓有关。特别是,它涉及对Ricci流的最大解的消失轮廓和这些结果的几何含义的研究。在这个建议下要研究的非线性方程形成了许多被认为对技术和整个社会都很重要的应用的基本概念。从化学品到石油甚至水,材料的净化通常是通过过滤器的扩散来实现的。净化过滤器是建议书中描述的多孔介质。薄膜动力学和薄膜间的范德华作用力可用超快扩散的奇异拟线性方程来描述。种群增长、高分子链增长的动力学,包括生物分子的交联化和高速增长,也是适合我们基础研究的非线性现象。宇宙膨胀和其他宇宙学现象的有趣问题似乎是由非线性动力学支配的,在某些情况下,这是这里描述的更复杂问题的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panagiota Daskalopoulos其他文献

Panagiota Daskalopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panagiota Daskalopoulos', 18)}}的其他基金

Nonlinear Geometric Flows: Ancient Solutions, Non-Compact Surfaces, and Regularity
非线性几何流:古老的解、非紧曲面和正则性
  • 批准号:
    1900702
  • 财政年份:
    2019
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
Nonlinear Geometric Partial Differential Equations: Entire Solutions and Regularity
非线性几何偏微分方程:全解和正则性
  • 批准号:
    1600658
  • 财政年份:
    2016
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
Nonlinear parabolic equations and related geometric problems
非线性抛物线方程及相关几何问题
  • 批准号:
    1266172
  • 财政年份:
    2013
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
Workshop on Probability, Control and Finance
概率、控制与金融研讨会
  • 批准号:
    1204036
  • 财政年份:
    2012
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Standard Grant
Nonlinear elliptic and parabolic problems in analysis and geometry
分析和几何中的非线性椭圆和抛物线问题
  • 批准号:
    1001116
  • 财政年份:
    2010
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Standard Grant
Nonlinear Elliptic and Parabolic Problems
非线性椭圆和抛物线问题
  • 批准号:
    0701045
  • 财政年份:
    2007
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
Nonlinear Diffusion Equations and Free-Boundary Problems
非线性扩散方程和自由边界问题
  • 批准号:
    0401126
  • 财政年份:
    2004
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
Nonlinear Parabolic Equations: Free-Boundary Problems and Singular Behavior
非线性抛物型方程:自由边界问题和奇异行为
  • 批准号:
    0312006
  • 财政年份:
    2002
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
Nonlinear Degenerate Parabolic Problems and Related Topics
非线性简并抛物线问题及相关主题
  • 批准号:
    9801304
  • 财政年份:
    1998
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Standard Grant
U.S.-Chile Cooperative Research: Nonlinear Degenerate Parabolic Problems
美国-智利合作研究:非线性简并抛物线问题
  • 批准号:
    9802406
  • 财政年份:
    1998
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Standard Grant

相似国自然基金

李超代数的parabolic范畴O的若干问题
  • 批准号:
    11371278
  • 批准年份:
    2013
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Analysis of blow-up phenomena for nonlinear parabolic equations
非线性抛物方程的爆炸现象分析
  • 批准号:
    23K13005
  • 财政年份:
    2023
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Analysis of formation and extinction of singularities in nonlinear parabolic equations
非线性抛物方程中奇点的形成和消失分析
  • 批准号:
    23K12998
  • 财政年份:
    2023
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Singular solutions for nonlinear elliptic and parabolic equations
非线性椭圆方程和抛物方程的奇异解
  • 批准号:
    DP220101816
  • 财政年份:
    2022
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Discovery Projects
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2022
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of solutions of nonlinear parabolic equations and front propagation phenomena
非线性抛物方程解的动力学和前传播现象
  • 批准号:
    21H00995
  • 财政年份:
    2021
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2021
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2020
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Discovery Grants Program - Individual
Qualitative Properties of Solutions of Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物方程解的定性性质
  • 批准号:
    1856491
  • 财政年份:
    2019
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Standard Grant
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2019
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Discovery Grants Program - Individual
Fully Nonlinear Elliptic and Parabolic Equations
完全非线性椭圆和抛物线方程
  • 批准号:
    1800495
  • 财政年份:
    2018
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了