Nonlinear Diffusion Equations and Free-Boundary Problems
非线性扩散方程和自由边界问题
基本信息
- 批准号:0401126
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: Nonlinear Diffusion Equations and Free boundary problemsPI: Panagiota Daskalopoulos, Columbia UniversityABSTRACTThis project concerns with the study of nonlinear elliptic and parabolic equations and free-boundary problems, in connection with more complex problems of differential geometry,includingthe Gauss curvature flow, the Ricci flow and the WeylProblem withnonnegative Gaussian curvature and with physical applications such as thin liquidfilm dynamics and flame propagation.The first part of the project will study thegeometry and regularity of free-boundary problems arising from the degeneracy ofquasilinear and fully-nonlinear geometric flows,such as the Gauss curvature flow withflat sides or more general curvature flows including the Harmonic flow.The understanding of such models of equations and free-boundary problemsmay have significant geometric and even topological applications.A different new line of research will study the regularity of solutionsofdegenerate Monge-Ampere equations and related ellipticfree-boundary problems. Its main goal is to develop new techniques toestablish the optimal regularity in fully-nonlineardegenerate elliptic equations. The proposed work is also motivated bythe well known Weyl problem with nonnegative Gaussian curvature.The aim of the third part of the project is to study the connectionbetween the geometry and the regularity as well as the formation ofsingularities in Stefan type free-boundary problems including also theHele-Shaw flow and free-boundary problem in flame propagation. The useof the geometric aspects of the problems is crucial in the proposedapproach. The last part of the proposed activity will study the asymptoticbehavior of solutions of variousmodels of singular diffusion. In particular, it will deal with the type II blow up behavior of maximal solutions of the two dimensionalRicci Flow. These solutions correspond to complete Riemannian conformalmetrics on a non-compact surface.This project links a wide range of active fields of mathematics, inparticular nonlinear partial differential equations, geometry andclassical analysis.The proposed research activity on the geometry and regularity ofdegenerate nonlinear parabolic equations and free-boundary problems mayresult to significant geometric and even topological applications. Theproposed research activity on Stefan type free-boundary problems isclosely relatedto various important physical models, including the propagation of thepremixed equi-diffusional flames in the limit of high activation energy.The models of singular diffusion which will be studiedin this project arise in variousphysical applications such as population dynamics, the kinetic theory ofgases and thin liquid film dynamics.Students and postdocs will be trained as part of this project. Special emphasis will be given to theencouragement of talented femaleundergraduate students, graduate students and postdocsto pursue a successfulcareer in mathematics or related sciences. New courses linking PartialDifferential Equations and Geometric Analysis for graduate students will be designedand implemented.
这个项目主要研究非线性椭圆型和抛物型方程和自由边界问题,涉及更复杂的微分几何问题,包括高斯曲率流、Ricci流和具有非负高斯曲率的Weil问题,以及物理应用,如薄膜动力学和火焰传播。本项目的第一部分将研究由拟线性和完全非线性几何流动的退化引起的自由边界问题的几何和正则性。例如平边的高斯曲率流或包括调和流在内的更一般的曲率流。理解这种方程模型和自由边界问题可能具有重要的几何甚至拓扑应用。另一条新的研究方向将研究退化的Monge-Ampere方程和相关椭圆自由边界问题解的正则性。它的主要目的是发展新的技术来建立完全非线性退化椭圆型方程的最优正则性。第三部分的目的是研究Stefan类型自由边界问题中几何和正则性之间的联系以及奇点的形成,包括Hele-Shaw流动和火焰传播中的自由边界问题。在所提出的方法中,利用问题的几何方面是至关重要的。活动的最后一部分将研究各种奇异扩散模型解的渐近行为。特别地,它将讨论二维Ricci流极大解的第二类爆破行为。这些解对应于非紧曲面上的完备黎曼构形度量。该项目将广泛的数学活跃领域联系在一起,特别是非线性偏微分方程、几何和经典分析。所提出的关于退化非线性抛物方程和自由边界问题的几何和正则性的研究活动可能会产生重要的几何甚至拓扑应用。关于Stefan类型自由边界问题的研究活动与各种重要的物理模型密切相关,包括预混等扩散火焰在高活化能极限下的传播。本项目将研究的奇异扩散模型出现在各种物理应用中,如布居动力学、气体动力学和薄膜动力学。学生和博士后将作为本项目的一部分进行培训。将特别重视鼓励有才华的女性本科生、研究生和博士后在数学或相关科学领域取得成功。将为研究生设计和实施连接偏微分方程式和几何分析的新课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panagiota Daskalopoulos其他文献
Panagiota Daskalopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Panagiota Daskalopoulos', 18)}}的其他基金
Nonlinear Geometric Flows: Ancient Solutions, Non-Compact Surfaces, and Regularity
非线性几何流:古老的解、非紧曲面和正则性
- 批准号:
1900702 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Nonlinear Geometric Partial Differential Equations: Entire Solutions and Regularity
非线性几何偏微分方程:全解和正则性
- 批准号:
1600658 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Nonlinear parabolic equations and related geometric problems
非线性抛物线方程及相关几何问题
- 批准号:
1266172 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Workshop on Probability, Control and Finance
概率、控制与金融研讨会
- 批准号:
1204036 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Nonlinear elliptic and parabolic problems in analysis and geometry
分析和几何中的非线性椭圆和抛物线问题
- 批准号:
1001116 - 财政年份:2010
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Nonlinear Elliptic and Parabolic Problems
非线性椭圆和抛物线问题
- 批准号:
0701045 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Nonlinear Parabolic Equations: Free-Boundary Problems and Singular Behavior
非线性抛物型方程:自由边界问题和奇异行为
- 批准号:
0312006 - 财政年份:2002
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Nonlinear Parabolic Equations: Free-Boundary Problems and Singular Behavior
非线性抛物型方程:自由边界问题和奇异行为
- 批准号:
0102252 - 财政年份:2001
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Nonlinear Degenerate Parabolic Problems and Related Topics
非线性简并抛物线问题及相关主题
- 批准号:
9801304 - 财政年份:1998
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
U.S.-Chile Cooperative Research: Nonlinear Degenerate Parabolic Problems
美国-智利合作研究:非线性简并抛物线问题
- 批准号:
9802406 - 财政年份:1998
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
带drift-diffusion项的抛物型偏微分方程组的能控性与能稳性
- 批准号:61573012
- 批准年份:2015
- 资助金额:49.0 万元
- 项目类别:面上项目
Levy过程驱动的随机Fast-Diffusion方程的Harnack不等式及其应用
- 批准号:11126079
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Qualitative and quantitative analysis of non-periodic space-time homogenization problems for nonlinear diffusion equations
非线性扩散方程非周期时空均匀化问题的定性和定量分析
- 批准号:
22K20331 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Quantitative analysis for nonlinear evolution equations of diffusion type
扩散型非线性演化方程的定量分析
- 批准号:
21KK0044 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Propagation phenomena in reaction-diffusion equations involving nonlinear diffusion and multi-stable reaction term
涉及非线性扩散和多稳态反应项的反应扩散方程中的传播现象
- 批准号:
20K03709 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on free boundary problems arising in mathematical ecology and related nonlinear diffusion equations
数学生态学中自由边界问题及相关非线性扩散方程的研究
- 批准号:
19K03573 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis on diffusion equations and nonlinear boundary conditions
扩散方程和非线性边界条件分析
- 批准号:
18K13435 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development and Application of Asymptotic Expansion Method for Nonlinear Reaction-Diffusion Equations
非线性反应扩散方程渐近展开法的发展与应用
- 批准号:
17K05334 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical Treatment of Nonlinear Cross-Diffusion Equations Arising in Biofilm Formation
生物膜形成过程中非线性交叉扩散方程的数值处理
- 批准号:
489411-2016 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Postgraduate Scholarships - Doctoral
On blow-up solutions for system of nonlinear drift-diffusion equations with nonlocal interactions
具有非局部相互作用的非线性漂移扩散方程组的爆炸解
- 批准号:
16K05219 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Damped Euler-Poisson equations and nonlinear diffusion waves
阻尼欧拉-泊松方程和非线性扩散波
- 批准号:
354724-2011 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Behavior of solutions for various nonlinear diffusion equations
各种非线性扩散方程解的行为
- 批准号:
15K17573 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)