Nonlinear Degenerate Parabolic Problems and Related Topics

非线性简并抛物线问题及相关主题

基本信息

  • 批准号:
    9801304
  • 负责人:
  • 金额:
    $ 8.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

DMS-9801304 P. Daskalopoulos The abstact follows : The major objectives of this proposal are concerned with the study of certain quasilinear or fully-nonlinear degenerate parabolic equations in connection with more complexproblems of differential geometry, including the Ricci flow and the Gauss curvature flow. These problems find physical applications in such areas as population dynamics, diffusion in porous media, and thin liquid film dynamics. One specific area which will be investigated is the regularity question in free-boundary problems arising from the degeneracy of certain non-linear parabolic equations, including the porous medium equation, the evolution p-laplacian equation and Gauss Curvature flow with flat sides. Another specific area of the main objectives concerns the study of ultra-fast diffusion parabolic equations, which have received large attention because of their relationship to differential geometry topics, such as the Ricci flow and the Yamabe flow. The solvability of the Cauchy problem for these equations, the study of the blow up profile of solutions, the nonradial structure solutions, and the uniqueness of solutions, are among the problems which will be investigated in this specific area. The still open question of the uniqueness of sign-solutions of the porous medium equation, in connection with the continuity question for a class of linear singular parabolic equations falls under the proposed major goals to be studied. The non-linear equations to be studied under this proposal form the basic concepts of many applications which deem to be important to technology and the society at large. The purification of materials, from chemicals to petroleum and even water, is often achieved by diffusion through filters. The purification filters are the porous media described in the proposal. Thin film dynamics and the Van der Waals forces operating between thin layers are described by singular quasilinear equations of ultra-fast d iffusion. The dynamics of population growth, polymer chain growth, including cross linking and high rate growth of biomolecules, are also non-linear phenomena amiable to our basic studies. The interesting problem of the expanding universe and other cosmological phenomena seem to be goverened by nonlinear dynamics, which in certain cases are applications of the more complex problems described here.
DMS-9801304 P.Daskalopoulos本文的主要目的是研究某些拟线性或完全非线性退化抛物型方程与更复杂的微分几何问题,包括Ricci流和Gauss曲率流。这些问题在人口动力学、多孔介质中的扩散和薄液膜动力学等领域都有物理应用。一个具体的研究领域是由某些非线性抛物型方程的退化引起的自由边界问题的正则性问题,包括多孔介质方程,发展的p-拉普拉斯方程和具有平坦边的高斯曲率流。另一个主要目标的具体领域涉及超快扩散抛物方程的研究,由于其与微分几何主题的关系,如Ricci流和Yamabe流,受到了极大的关注。这些方程的柯西问题的可解性,解的爆破轮廓的研究,非径向结构解,解的唯一性,都是这一特定领域将要研究的问题。与一类线性奇异抛物型方程的连续性问题有关的多孔介质方程符号解的唯一性问题仍然是悬而未决的问题,这是提出要研究的主要目标之一。在这一建议下要研究的非线性方程形成了许多应用的基本概念,这些应用被认为对技术和整个社会都很重要。从化学品到石油甚至水,材料的净化通常是通过过滤器的扩散来实现的。净化过滤器是建议书中描述的多孔介质。薄膜动力学和薄层间的范德华力可用超快扩散的奇异拟线性方程描述。种群增长、高分子链增长的动力学,包括生物分子的交联化和高速增长,也是适合我们基础研究的非线性现象。宇宙膨胀和其他宇宙学现象的有趣问题似乎是由非线性动力学控制的,在某些情况下,这是这里描述的更复杂问题的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panagiota Daskalopoulos其他文献

Panagiota Daskalopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panagiota Daskalopoulos', 18)}}的其他基金

Nonlinear Geometric Flows: Ancient Solutions, Non-Compact Surfaces, and Regularity
非线性几何流:古老的解、非紧曲面和正则性
  • 批准号:
    1900702
  • 财政年份:
    2019
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Continuing Grant
Nonlinear Geometric Partial Differential Equations: Entire Solutions and Regularity
非线性几何偏微分方程:全解和正则性
  • 批准号:
    1600658
  • 财政年份:
    2016
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Continuing Grant
Nonlinear parabolic equations and related geometric problems
非线性抛物线方程及相关几何问题
  • 批准号:
    1266172
  • 财政年份:
    2013
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Continuing Grant
Workshop on Probability, Control and Finance
概率、控制与金融研讨会
  • 批准号:
    1204036
  • 财政年份:
    2012
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
Nonlinear elliptic and parabolic problems in analysis and geometry
分析和几何中的非线性椭圆和抛物线问题
  • 批准号:
    1001116
  • 财政年份:
    2010
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
Nonlinear Elliptic and Parabolic Problems
非线性椭圆和抛物线问题
  • 批准号:
    0701045
  • 财政年份:
    2007
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Continuing Grant
Nonlinear Diffusion Equations and Free-Boundary Problems
非线性扩散方程和自由边界问题
  • 批准号:
    0401126
  • 财政年份:
    2004
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Continuing Grant
Nonlinear Parabolic Equations: Free-Boundary Problems and Singular Behavior
非线性抛物型方程:自由边界问题和奇异行为
  • 批准号:
    0312006
  • 财政年份:
    2002
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Continuing Grant
Nonlinear Parabolic Equations: Free-Boundary Problems and Singular Behavior
非线性抛物型方程:自由边界问题和奇异行为
  • 批准号:
    0102252
  • 财政年份:
    2001
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Continuing Grant
U.S.-Chile Cooperative Research: Nonlinear Degenerate Parabolic Problems
美国-智利合作研究:非线性简并抛物线问题
  • 批准号:
    9802406
  • 财政年份:
    1998
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant

相似海外基金

Free boundary propagation and noise: analysis and numerics of stochastic degenerate parabolic equations
自由边界传播和噪声:随机简并抛物线方程的分析和数值
  • 批准号:
    397495103
  • 财政年份:
    2018
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Research Grants
Regularity for doubly nonlinear degenerate and singular parabolic equations and a geometric flow
双非线性简并和奇异抛物线方程和几何流的正则性
  • 批准号:
    18K03375
  • 财政年份:
    2018
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regularity for solutions to quasilinear degenerate parabolic-hyperbolic stochastic partial differential equations (SPDEs) driven by nonlinear multipli
由非线性乘法驱动的拟线性简并抛物双曲随机偏微分方程 (SPDE) 解的正则性
  • 批准号:
    1939627
  • 财政年份:
    2017
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Studentship
Topics in Degenerate and Singular Parabolic Equations and Homogenization
简并和奇异抛物型方程以及齐次化主题
  • 批准号:
    1265548
  • 财政年份:
    2013
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Continuing Grant
Boundary behavior of solutions of the mean curvature flow with boundary conditions and nonlinear degenerate parabolic equations
具有边界条件和非线性简并抛物线方程的平均曲率流解的边界行为
  • 批准号:
    25800084
  • 财政年份:
    2013
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Strong Maximum and Comparison Principles for Degenerate and Singular Parabolic Equations
简并和奇异抛物方程的强极大值和比较原理
  • 批准号:
    230454270
  • 财政年份:
    2012
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Research Grants
Entropy solutions for nonlinear degenerate parabolic equations and hyperbolic systems of conservation laws
非线性简并抛物线方程和守恒定律双曲系统的熵解
  • 批准号:
    22540235
  • 财政年份:
    2010
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
U.S.-Chile Cooperative Research: Nonlinear Degenerate Parabolic Problems
美国-智利合作研究:非线性简并抛物线问题
  • 批准号:
    9802406
  • 财政年份:
    1998
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
The well-posedness of the Cauchy problems for degenerate parabolic eqations
简并抛物方程的柯西问题的适定性
  • 批准号:
    09640198
  • 财政年份:
    1997
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Construction and Analysis of Algorithms for Degenerate Variational and Parabolic Problems
数学科学:退化变分和抛物型问题算法的构建和分析
  • 批准号:
    9504492
  • 财政年份:
    1995
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了