GOALI: Extreme Environment Microcontrollers
GOALI:极端环境微控制器
基本信息
- 批准号:1607285
- 负责人:
- 金额:$ 34.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractGOALI: Extreme Environment MicrocontrollersProject Objectives:The market needs of extreme environment electronics encompass many commercial applications such as integrated gate drivers in power industry, in-engine sensing and control in automobile industry, well condition monitoring and drilling assistance in oil/gas exploration, cryogenic high-field magnet creation in medical imaging instrumentation, and many others like superconducting computing and energy storage systems, laser industry, space exploration, in-field distributed sensors, magnetic levitation transport systems, and infrared systems.Non-Technical Abstract:The extreme environments pose significant challenges to electronics, especially for digital integrated circuits: for extreme temperature environments, since the circuit speed is a strong function of temperature, timing control becomes very difficult across wide temperature ranges; for unstable energy source environment, the unstable or low power supply causes large variations in circuit speed as well. In the prevailing clocked synchronous digital integrated circuits, synchronized clocks are used to control and coordinate the circuit operation, along with a set of timing constraints such as setup and hold times. These critical timing constraints can be easily broken in extreme environments due to the circuit speed changes, thereby inducing system malfunction. Therefore, innovations are needed to solve these problems and develop extreme environment electronics in order to make contributions to the commercial industry discussed above in efficient and reliable sensing, communication, control, and data processing subsystems.Technical AbstractThis GOALI project is a collaborative effort between the University of Arkansas and Radiance Technologies to develop quasi-delay insensitive asynchronous microcontrollers capable of operating reliably under extreme environments without extra protection or control/adjustment. Quasi-delay insensitive asynchronous logic like the NULL Convention Logic (NCL) uses local handshaking protocols in lieu of global clocks to control the circuit behavior. Individual gate delay has no impact on the correctness of the circuit's outputs. This feature guarantees robust circuit operation under extreme environments, making NCL a promising candidate for designing microcontrollers for such applications. However, innovations in microcontroller architecture and NCL circuit design are needed to improve performance, reduce overhead, and enhance the robustness: at the architecture-level, the prevailing bus architecture is unsuitable for NCL and needs to be replaced; the distributed storage mechanism is the weakest link of circuit operation and needs to be reorganized; and the external interrupt handling needs to redesigned as fully asynchronous. At the circuit-level, transistors need to be resized to improve the reliability under extreme environments; NCL logic gate design needs to be modified for low supply voltages; and NCL logic transformation needs to be investigated to improve the performance. With the industry-standard guidance, experience, and assistance from Radiance Technologies, a prototype NCL microcontroller incorporating the above innovations will be designed, fabricated, and tested. The results will be analyzed for further improvements, dissemination, and technology transfer for potential commercialization.
摘要目标:极端环境微处理器项目目标:极端环境电子产品的市场需求包括许多商业应用,如电力工业中的集成栅极驱动器,汽车工业中的发动机内传感和控制,石油/天然气勘探中的井况监测和钻井辅助,医疗成像仪器中的低温高场磁体产生,以及许多其他应用,如超导计算和储能系统,激光工业,空间探索,现场分布式传感器,磁悬浮运输系统和红外系统。非技术摘要:极端环境对电子产品,特别是数字集成电路提出了重大挑战:对于极端温度环境,由于电路速度是温度的强函数,因此在很宽的温度范围内时序控制变得非常困难;对于不稳定的能源环境,不稳定或低电源也会导致电路速度发生很大变化。在流行的时钟同步数字集成电路中,同步时钟被用于控制和协调电路操作,沿着一组定时约束,例如建立和保持时间。在极端环境下,由于电路速度的变化,这些关键的时序约束很容易被打破,从而导致系统故障。因此,需要创新来解决这些问题并开发极端环境电子器件,以便在有效和可靠的感测、通信、控制、通信和通信方面为上述商业产业做出贡献。技术摘要GOALI项目是阿肯色州大学和Radiance技术公司合作开发的准延迟不敏感的异步微控制器能够在极端环境下可靠地运行,无需额外的保护或控制/调整。准延迟不敏感的异步逻辑,如空约定逻辑(NCL),使用本地握手协议代替全局时钟来控制电路行为。单个门延迟对电路输出的正确性没有影响。这一特性保证了电路在极端环境下的稳定运行,使NCL成为设计此类应用微控制器的有希望的候选者。然而,需要在微控制器架构和NCL电路设计方面进行创新,以提高性能,减少开销,并增强鲁棒性:在架构级,流行的总线架构不适合NCL,需要被替换;分布式存储机制是电路操作的最薄弱环节,需要重新组织;外部中断处理需要重新设计为完全异步。在电路级,需要调整晶体管的尺寸以提高极端环境下的可靠性;需要修改NCL逻辑门的设计以适应低电源电压;需要研究NCL逻辑变换以提高性能。在Radiance Technologies的行业标准指导、经验和帮助下,将设计、制造和测试包含上述创新的原型NCL微控制器。将对结果进行分析,以进一步改进、传播和技术转让,从而实现潜在的商业化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Di其他文献
beta-Cyclodextrin-based oil-absorbents: Preparation, high oil absorbency and reusability
β-环糊精基吸油剂:制备、高吸油性和可重复使用性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:11.2
- 作者:
Ding Lei;Li Yi;Jia Di;Deng Jianping;Yang Wantai - 通讯作者:
Yang Wantai
Shear strength of GMZ07 bentonite and its mixture with sand saturated with saline solution
GMZ07膨润土及其与盐溶液饱和砂的混合物的剪切强度
- DOI:
10.1016/j.clay.2016.08.004 - 发表时间:
2016-11 - 期刊:
- 影响因子:5.6
- 作者:
Zhang Long;Sun De'an;Jia Di - 通讯作者:
Jia Di
Multi-Threshold NULL Convention Logic (MTNCL): An Ultra-Low Power Asynchronous Circuit Design Methodology
多阈值空约定逻辑 (MTNCL):一种超低功耗异步电路设计方法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Liang Zhou;R. Parameswaran;F. A. Parsan;Scott C. Smith;Jia Di - 通讯作者:
Jia Di
Fork Path: Batching ORAM Requests to Remove Redundant Memory Accesses
分叉路径:批处理 ORAM 请求以删除冗余内存访问
- DOI:
10.1109/tcad.2019.2948914 - 发表时间:
2020-10 - 期刊:
- 影响因子:0
- 作者:
Jingchen Zhu;Guangyu Sun;Xian Zhang;Chao Zhang;Weiqi Zhang;Yun Liang;Tao Wang;Yiran Chen;Jia Di - 通讯作者:
Jia Di
Nonvolatile NULL Convention Logic Pipeline using Magnetic Tunnel Junctions
使用磁性隧道结的非易失性 NULL 约定逻辑管道
- DOI:
10.1109/tnano.2021.3112160 - 发表时间:
2021 - 期刊:
- 影响因子:2.4
- 作者:
Shaoqian Wei;Erya Deng;Jia Di;Wang Kang;Weisheng Zhao - 通讯作者:
Weisheng Zhao
Jia Di的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia Di', 18)}}的其他基金
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329014 - 财政年份:2023
- 资助金额:
$ 34.92万 - 项目类别:
Continuing Grant
CCRI:Medium:Collaborative Research:Hardware-in-the-Loop and Remotely-Accessible/Configurable/Programmable Internet of Things (IoT) Testbeds
CCRI:中:协作研究:硬件在环和远程访问/可配置/可编程物联网 (IoT) 测试平台
- 批准号:
2016485 - 财政年份:2020
- 资助金额:
$ 34.92万 - 项目类别:
Standard Grant
IRES Track I:Collaborative Research:Application-Specific Asynchronous Deep Learning IC Design for Ultra-Low Power
IRES 轨道 I:协作研究:超低功耗专用异步深度学习 IC 设计
- 批准号:
1951489 - 财政年份:2020
- 资助金额:
$ 34.92万 - 项目类别:
Standard Grant
Cyber-Centric Multidisciplinary Security Workforce Development
以网络为中心的多学科安全劳动力发展
- 批准号:
1922180 - 财政年份:2019
- 资助金额:
$ 34.92万 - 项目类别:
Continuing Grant
SaTC: TTP: Medium: Collaborative: RESULTS: Reverse Engineering Solutions on Ubiquitous Logic for Trustworthiness and Security
SaTC:TTP:媒介:协作:结果:针对可信性和安全性的普适逻辑的逆向工程解决方案
- 批准号:
1703602 - 财政年份:2017
- 资助金额:
$ 34.92万 - 项目类别:
Standard Grant
SHF: Small: ADAPT: an Adaptive Delay-insensitive Asynchronous PlaTform for energy efficiency across wide dynamic ranges
SHF:小型:ADAPT:自适应延迟不敏感异步平台,可在宽动态范围内实现能源效率
- 批准号:
1216382 - 财政年份:2012
- 资助金额:
$ 34.92万 - 项目类别:
Standard Grant
TC: Medium: Collaborative Research: Side-Channel-Proof Embedded Processors with Integrated Multi-Layer Protection
TC:中:协作研究:具有集成多层保护的侧通道防护嵌入式处理器
- 批准号:
0904943 - 财政年份:2009
- 资助金额:
$ 34.92万 - 项目类别:
Standard Grant
相似海外基金
Vision-only structure-from-motion via acoustic video for extreme underwater environment sensing
通过声学视频进行纯视觉运动结构,用于极端水下环境传感
- 批准号:
24K20867 - 财政年份:2024
- 资助金额:
$ 34.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Learning 3D information and ego-motion from acoustic video in extreme underwater environment
在极端水下环境中从声学视频中学习 3D 信息和自我运动
- 批准号:
23K19993 - 财政年份:2023
- 资助金额:
$ 34.92万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Constructing the decision environment from memory: how overweighting extreme events biases choice
从记忆构建决策环境:过度重视极端事件如何影响选择
- 批准号:
ES/T016639/2 - 财政年份:2023
- 资助金额:
$ 34.92万 - 项目类别:
Research Grant
Development of weather data for extreme climate in the design of building environment and HVAC equipment
建筑环境和暖通空调设备设计中极端气候天气数据的开发
- 批准号:
23KJ1840 - 财政年份:2023
- 资助金额:
$ 34.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows
UHTC Conference - Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications V
UHTC会议-超高温陶瓷:极端环境应用材料V
- 批准号:
2228357 - 财政年份:2022
- 资助金额:
$ 34.92万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Graphene Nanoelectromechanical Oscillators for Extreme Temperature and Harsh Environment Sensing
EAGER:合作研究:用于极端温度和恶劣环境传感的石墨烯纳米机电振荡器
- 批准号:
2221925 - 财政年份:2022
- 资助金额:
$ 34.92万 - 项目类别:
Standard Grant
Assesment of Extreme value statistical characteristics of weather affecting the residential environment
影响居住环境的天气极值统计特征评估
- 批准号:
22K02098 - 财政年份:2022
- 资助金额:
$ 34.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: Collaborative Research: Graphene Nanoelectromechanical Oscillators for Extreme Temperature and Harsh Environment Sensing
EAGER:合作研究:用于极端温度和恶劣环境传感的石墨烯纳米机电振荡器
- 批准号:
2221881 - 财政年份:2022
- 资助金额:
$ 34.92万 - 项目类别:
Standard Grant
Proposal of anti-resonance-stabilization for polymer design with hyperstability in extreme environment
极端环境下超稳定聚合物设计的反共振稳定建议
- 批准号:
22H00332 - 财政年份:2022
- 资助金额:
$ 34.92万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Prediction of fatigue limit of three-dimensional shaped article under extreme environment and extension of thruster life with combustion test.
通过燃烧试验预测极端环境下三维成型件的疲劳极限并延长推进器寿命。
- 批准号:
21K03783 - 财政年份:2021
- 资助金额:
$ 34.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




