Canonical metrics on Kahler and Riemannian manifolds and their moduli

卡勒和黎曼流形及其模的规范度量

基本信息

  • 批准号:
    1609335
  • 负责人:
  • 金额:
    $ 14.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

It is a fundamental problem to construct appropriate spaces of various geometric structures in both algebraic and differential geometry. These spaces, referred to as moduli spaces, have played a fundamental role in mathematical subjects ranging from analysis, geometry, and topology to number theory. More than a century ago, Riemann, Poincare, and Hilbert pioneered the study of "canonical" metric structures on a surface. Through the connection to the Einstein equations, the projects under investigation will help understand astronomy and Cosmology. The methods of analyzing Einstein type equations in this project will also lead to applications in Engineering and economics. The principal investigator organizes and participates in the integrated research/education programs that aim to attract students from under-represented groups to the study of more advanced mathematics subjects such as geometric analysis, thus helping to improve the overall education level of the nation. The PI will investigate the following projects, all of which emerge from the study of the algebraic/analytic aspects of the moduli spaces. First, he will study the geometry of the moduli space of polarized Kahler manifolds via algebraic and analytic means (e.g., the positivity of the line bundles and heights over the moduli space). Second, he will study the effective scope of geometric invariant theory (GIT) invented by Hilbert and Mumford on the construction of algebraic moduli based on the work of the PI and his collaborators. In particular, the PI investigates more examples in order to develop a general framework that is more flexible than the classical GIT. Third, he will study the limiting behavior of Kahler-Ricci flow on low-dimensional manifolds, in particular the situation when the complex structure jumps. Fourth, he will study the canonical embedding of Riemannian manifolds into the infinite-dimensional unit sphere and relate the extrinsic geometry of the embedding to the canonical metrics on the underlying Riemannian manifold. This is intended as the first step in attempting to unify the similarities between conformal and Kahler geometry. The projects proposed above will apply both analytic and algebraic tools coming from algebraic/differential geometry as well as the new ideas introduced by the principal investigator and his collaborators over the years.
构造具有各种几何结构的空间是代数几何和微分几何中的一个基本问题。这些空间被称为模空间,在从分析、几何、拓扑到数论的数学学科中发挥了重要作用。一个多世纪前,Riemann、Poincare和Hilbert开创了曲面上“典范”度量结构的研究。通过与爱因斯坦方程的联系,正在调查的项目将有助于理解天文学和宇宙学。本计画中爱因斯坦型方程的分析方法,也将在工程与经济上有所应用。 首席研究员组织和参与综合研究/教育计划,旨在吸引代表性不足的群体的学生学习更高级的数学科目,如几何分析,从而帮助提高国家的整体教育水平。PI将研究以下项目,所有这些项目都来自模空间的代数/分析方面的研究。 首先,他将通过代数和分析手段(例如,模空间上的线束和高度的正性)。其次,他将研究希尔伯特和芒福德发明的几何不变理论(GIT)的有效范围,基于PI及其合作者的工作,对代数模的构造。特别是,PI研究了更多的例子,以开发一个比经典GIT更灵活的通用框架。 第三,他将研究Kahler-Ricci流在低维流形上的极限行为,特别是复杂结构跳跃时的情况。第四,他将研究规范嵌入黎曼流形到无限维单位球和相关的外在几何嵌入的规范度量的基础黎曼流形。这是第一步,试图统一的相似性之间的共形和卡勒几何。上述项目将应用来自代数/微分几何的分析和代数工具,以及首席研究员及其合作者多年来提出的新想法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaowei Wang其他文献

Mechanism and control of rotational coherence in femtosecond laser-driven N-2(+)
飞秒激光驱动 N-2( ) 旋转相干性机理与控制
  • DOI:
    10.1364/oe.398888
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Hongbin Lei;Guihua Li;Hongqiang Xie;Qian Zhang;Xiaowei Wang;Jing Zhao;Zhiming Chen;Zengxiu Zhao
  • 通讯作者:
    Zengxiu Zhao
High-Efficiency Digital Power Amplifier Design Based on 22-nm CMOS Process
基于22 nm CMOS工艺的高效数字功率放大器设计
Mending the failing heart
修补失败的心
  • DOI:
    10.18632/aging.101879
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaowei Wang;K. Peter
  • 通讯作者:
    K. Peter
Observation of mother-perpetrated infanticide in golden takins (Budorcas taxicolor bedfordi)
金牛羚 (Budorcas Taxicolor Bedfordi) 杀母行为的观察
  • DOI:
    10.24272/j.issn.2095-8137.2020.041
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Haitao Zhao;Wenqing Zhang;Kangsheng Jia;Jiaxuan Li;Xuxiang Bai;Xiaowei Wang;Songtao Guo;Shujun He;Hongjuan Sun;Yinghu Lei;Ruliang Pan;Baoguo Li
  • 通讯作者:
    Baoguo Li
Analysis for different flavor compounds in mature milk from human and livestock animals by GC × GC-TOFMS.
  • DOI:
    10.1016/j.fochx.2023.100760
  • 发表时间:
    2023-10-30
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Yinggang Sun;Yanzhi Wu;Ben Liu;Rui Chen;Yanjun Qiao;Qiu Zhang;Qian Li;Xiaowei Wang;Zeying Wang
  • 通讯作者:
    Zeying Wang

Xiaowei Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
  • 批准号:
    2303508
  • 财政年份:
    2023
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Standard Grant
Research on the relationship between canonical metrics and deformations of complex structures on compact Kahler manifolds
紧卡勒流形上复杂结构正则度量与变形关系研究
  • 批准号:
    22K03316
  • 财政年份:
    2022
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
  • 批准号:
    1945869
  • 财政年份:
    2019
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Standard Grant
Canonical Kahler metrics for Fano manifolds with non-vanishing Futaki invariant
具有非消失 Futaki 不变量的 Fano 流形的规范 Kahler 度量
  • 批准号:
    19J01482
  • 财政年份:
    2019
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Canonical Kahler metrics and Moduli spaces
规范卡勒度量和模空间
  • 批准号:
    18K13389
  • 财政年份:
    2018
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
  • 批准号:
    1710500
  • 财政年份:
    2017
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Standard Grant
Canonical Metrics, the Kahler-Ricci Flow, and Their Applica1ons
规范度量、Kahler-Ricci 流及其应用
  • 批准号:
    1711439
  • 财政年份:
    2017
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Standard Grant
Kahler geometry and canonical metrics
卡勒几何和规范度量
  • 批准号:
    1306298
  • 财政年份:
    2013
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Standard Grant
Canonical metrics on Kahler manifolds and Monge-Ampere equations
卡勒流形和 Monge-Ampere 方程的规范度量
  • 批准号:
    DE120101167
  • 财政年份:
    2012
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Discovery Early Career Researcher Award
Canonical Kahler metrics, algebro-geometric stability and Sasakian geometry
规范卡勒度量、代数几何稳定性和 Sasakian 几何
  • 批准号:
    24540098
  • 财政年份:
    2012
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了