Canonical metrics on Kahler manifolds and Monge-Ampere equations

卡勒流形和 Monge-Ampere 方程的规范度量

基本信息

  • 批准号:
    DE120101167
  • 负责人:
  • 金额:
    $ 26.88万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Discovery Early Career Researcher Award
  • 财政年份:
    2012
  • 资助国家:
    澳大利亚
  • 起止时间:
    2012-06-30 至 2016-04-30
  • 项目状态:
    已结题

项目摘要

This project will introduce new ideas and techniques to study the existence of canonical metrics on Kahler manifolds, which is a fundamental problem in geometry. Advances in this research will have influence on other areas of science such as mechanics, string theory and mathematical physics.
这个项目将引入新的思想和技术来研究Kahler流形上的正则度量的存在性,这是几何学中的一个基本问题。这项研究的进展将对其他科学领域产生影响,如力学、弦理论和数学物理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr Bin Zhou其他文献

Dr Bin Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
  • 批准号:
    2303508
  • 财政年份:
    2023
  • 资助金额:
    $ 26.88万
  • 项目类别:
    Standard Grant
Research on the relationship between canonical metrics and deformations of complex structures on compact Kahler manifolds
紧卡勒流形上复杂结构正则度量与变形关系研究
  • 批准号:
    22K03316
  • 财政年份:
    2022
  • 资助金额:
    $ 26.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
  • 批准号:
    1945869
  • 财政年份:
    2019
  • 资助金额:
    $ 26.88万
  • 项目类别:
    Standard Grant
Canonical Kahler metrics for Fano manifolds with non-vanishing Futaki invariant
具有非消失 Futaki 不变量的 Fano 流形的规范 Kahler 度量
  • 批准号:
    19J01482
  • 财政年份:
    2019
  • 资助金额:
    $ 26.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Canonical Kahler metrics and Moduli spaces
规范卡勒度量和模空间
  • 批准号:
    18K13389
  • 财政年份:
    2018
  • 资助金额:
    $ 26.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Canonical Metrics, the Kahler-Ricci Flow, and Their Applica1ons
规范度量、Kahler-Ricci 流及其应用
  • 批准号:
    1711439
  • 财政年份:
    2017
  • 资助金额:
    $ 26.88万
  • 项目类别:
    Standard Grant
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
  • 批准号:
    1710500
  • 财政年份:
    2017
  • 资助金额:
    $ 26.88万
  • 项目类别:
    Standard Grant
Canonical metrics on Kahler and Riemannian manifolds and their moduli
卡勒和黎曼流形及其模的规范度量
  • 批准号:
    1609335
  • 财政年份:
    2016
  • 资助金额:
    $ 26.88万
  • 项目类别:
    Continuing Grant
Kahler geometry and canonical metrics
卡勒几何和规范度量
  • 批准号:
    1306298
  • 财政年份:
    2013
  • 资助金额:
    $ 26.88万
  • 项目类别:
    Standard Grant
Canonical Kahler metrics, algebro-geometric stability and Sasakian geometry
规范卡勒度量、代数几何稳定性和 Sasakian 几何
  • 批准号:
    24540098
  • 财政年份:
    2012
  • 资助金额:
    $ 26.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了