III: Small: Robust Large-Scale Data Mining for Knowledge Discovery in Depression Thought Records

III:小:用于抑郁症思想记录知识发现的鲁棒大规模数据挖掘

基本信息

  • 批准号:
    1619308
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

This project investigates new robust large-scale data mining and machine learning algorithms to solve critical computational challenges in mining massive depression thought records for cognitive behavior therapy. Depression is rapidly emerging as one of the major problems in our society and is also related to many other health conditions, such as stroke, diabetes, hypertension, HIV/AIDS, etc. Cognitive behavior therapy is the most extensively researched form of psychotherapy for depression, and the depression thought records from patients is the key component of cognitive behavior therapy. However, the process of reviewing and analyzing the depression thought records is extremely time consuming, which inhibits both clinical interviews and the training of new therapists. This project builds a novel data mining system to automatically discover knowledge from depression thought records for assisting therapists in selecting potential interventions and aiding new therapists in their development of cognitive behavior therapy skills. This project will facilitate the development of novel educational tools to enable new courses and enhance current courses. This project engages minority students and under-served populations in research activities to give them a better exposure to cutting-edge science research. To effectively and efficiently analyze large-scale depression thought records, this project explores the following research tasks. First, the project develops a robust semi-supervised learning model to categorize logical thinking errors of depression thought records. Second, the project investigates a joint multi-task method to simultaneously recognize the categories of thinking errors and emotions of depression thought records. Third, new multi-label and multi-instance learning is studied for identifying coping activities. Fourth, to analyze the multi-language depression thought records, robust transfer learning methods are developed for cross-language knowledge transfer. Meanwhile, parallel computational algorithms are designed and applied for large-scale depression thought record data mining. These novel data mining algorithms are designed to solve large-scale applications and automate the depression thought record data mining, which holds great promise for smart health.
该项目研究了新的强大的大规模数据挖掘和机器学习算法,以解决在挖掘用于认知行为治疗的大量抑郁症思维记录方面的关键计算挑战。抑郁症正迅速成为我们社会中的主要问题之一,并且还与许多其他健康状况有关,如中风、糖尿病、高血压、HIV/AIDS等。认知行为疗法是抑郁症心理治疗中研究最广泛的形式,而来自患者的抑郁思维记录是认知行为疗法的关键组成部分。然而,审查和分析抑郁症的思想记录的过程是非常耗时的,这抑制了临床访谈和新的治疗师的培训。本计画建立一个新颖的资料探勘系统,自动从忧郁症患者的思想记录中发现知识,以协助治疗师选择可能的治疗方法,并协助新治疗师发展认知行为治疗技巧。该项目将促进开发新的教育工具,以启用新课程和加强现有课程。该项目使少数民族学生和得不到充分服务的人口参与研究活动,使他们更好地接触尖端科学研究。为了有效和高效地分析大规模的抑郁症思维记录,本项目探讨了以下研究任务。首先,该项目开发了一个强大的半监督学习模型来分类抑郁症思维记录的逻辑思维错误。第二,本研究探讨一种联合多任务方法,以同时识别抑郁思维记录中的思维错误和情绪的类别。第三,新的多标签和多实例学习研究识别应对活动。第四,通过对多语言抑郁症思维记录的分析,提出了跨语言知识迁移的鲁棒迁移学习方法。同时,设计了并行计算算法,并应用于大规模抑郁症思维记录数据挖掘。这些新颖的数据挖掘算法旨在解决大规模应用程序和自动化抑郁症思想记录数据挖掘,这对智能健康有很大的希望。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semi-Supervised Classifications via Elastic and Robust Embedding
  • DOI:
    10.1609/aaai.v31i1.10946
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yun Liu;Yiming Guo;Hua Wang;F. Nie;Heng Huang
  • 通讯作者:
    Yun Liu;Yiming Guo;Hua Wang;F. Nie;Heng Huang
Asynchronous Mini-Batch Gradient Descent with Variance Reduction for Non-Convex Optimization
  • DOI:
    10.1609/aaai.v31i1.10940
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhouyuan Huo;Heng Huang
  • 通讯作者:
    Zhouyuan Huo;Heng Huang
Joint Capped Norms Minimization for Robust Matrix Recovery
鲁棒矩阵恢复的联合上限范数最小化
Learning Task Relational Structure for Multi-task Feature Learning
Multi-Class Support Vector Machine via Maximizing Multi-Class Margins
  • DOI:
    10.24963/ijcai.2017/440
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Xu;Xianglong Liu;Zhouyuan Huo;Cheng Deng;F. Nie;Heng Huang
  • 通讯作者:
    Jie Xu;Xianglong Liu;Zhouyuan Huo;Cheng Deng;F. Nie;Heng Huang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heng Huang其他文献

Perianesthesia Care of the Oncologic Patients Undergoing Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy: A Retrospective Study.
接受热腹腔化疗肿瘤细胞减灭术的肿瘤患者的围麻醉护理:一项回顾性研究。
Functional analysis of cardiac MR images using SPHARM modeling
使用 SPHARM 建模对心脏 MR 图像进行功能分析
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heng Huang;Li Shen;J. Ford;F. Makedon;Rong Zhang;Ling Gao;J. Pearlman
  • 通讯作者:
    J. Pearlman
Monitoring Association of Membrane Proteins with Micro-Domains and Cytoskeleton in Live Cells During Signaling and Perturbation
  • DOI:
    10.1016/j.bpj.2010.12.1596
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Heng Huang;Arnd Pralle
  • 通讯作者:
    Arnd Pralle
Modeling study on anisotropic heat conduction of PEMFC GDLs facilitated by Micro-CT
基于微CT的质子交换膜燃料电池气体扩散层各向异性热传导的建模研究
  • DOI:
    10.1016/j.ijheatmasstransfer.2025.127302
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    5.800
  • 作者:
    Hang Liu;Xuecheng Lv;Heng Huang;Yang Li;Deqi Li;Zhifu Zhou;Wei-Tao Wu;Lei Wei;Yubai Li;Yongchen Song
  • 通讯作者:
    Yongchen Song
Research on Virtual Enterprise Workflow Modeling and Management System Implementation
虚拟企业工作流建模及管理系统实现研究

Heng Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heng Huang', 18)}}的其他基金

Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
  • 批准号:
    2405416
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
  • 批准号:
    2347604
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2348306
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2213701
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
  • 批准号:
    2225775
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2217003
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311597
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Robust Learning and Inference Protocols for Mitigating Information Pollution
合作研究:III:小型:用于减轻信息污染的鲁棒学习和推理协议
  • 批准号:
    2135581
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Robust Learning and Inference Protocols for Mitigating Information Pollution
合作研究:III:小型:用于减轻信息污染的鲁棒学习和推理协议
  • 批准号:
    2135573
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
III: Small: Visualizing Robust Features in Vector and Tensor Fields
III:小:可视化矢量和张量场中的鲁棒特征
  • 批准号:
    1910733
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
III: Small: Robust Large-Scale Data Mining for Knowledge Discovery in Depression Thought Records
III:小:用于抑郁症思想记录知识发现的鲁棒大规模数据挖掘
  • 批准号:
    1845666
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
III: Small: Robust Reinforcement Learning for Invasive Species Management
III:小型:用于入侵物种管理的强大强化学习
  • 批准号:
    1717368
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
III: Small: Robust Algorithms for Multi-Task Learning of Spatio-Temporal Data
III:小:时空数据多任务学习的鲁棒算法
  • 批准号:
    1615612
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CSR: III: Small: Collaborative Research: Hybrid Vehicle-Cloud Solutions for Robust, Cost-Efficient Road Monitoring
CSR:III:小型:协作研究:用于稳健、经济高效的道路监控的混合车辆云解决方案
  • 批准号:
    1527097
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了