I-Corps: Rapid 3D Extrusion of Synthetic Tumor Microenvironments
I-Corps:合成肿瘤微环境的快速 3D 挤压
基本信息
- 批准号:1623372
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-15 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solid tumors house an assortment of complex and dynamically changing microenvironments in which signaling events between multiple cell types are known to play a critical role in tumor progression, invasion, and metastasis. To deepen the understanding of this biology, it is desirable to accurately model these structures in vitro for basic studies and for drug screening. However, current systems fall short of mimicking the complex organization of cells and matrix in vivo. The vision for this technology is toward the development and commercialization of more biologically-relevant models for paracrine loop signaling, particularly with regards to cancer metastasis. This I-Corps team believes that the proposed technology can be utilized in high-throughput drug screening platforms that take seconds to manufacture tissue scaffolds and only a few days of incubation to monitor cell-coupled migration effects. The team also believes that this rapid and biologically-relevant analysis method can also be applied to determine optimal drug concentrations for pharmaceutical inhibition targeting Tumor Associated Macrophages (TAMs) for personalized medicine, in addition to other cell-coupled migration targets. The technology is currently in the prototyping stage, where this I-Corps team is continuously validating this technology in the breast adenocarcinoma/macrophage system with other drugs and concentrations. The team is also exploring if this technology can be applied to other cell pair systems as a migration tool. As of yet, the team has not taken steps toward commercializing the technology. Through the I-Corps program, the team plans to make contacts with pharmaceutical companies that might be willing to use the proposed technology as a service for a trial run. The team believes that this will ultimately be the technology demonstration required as its minimum viable product. In addition, they plan on further exploring other commercialization routes, such as integrated test kits, in the future.
实体瘤包含各种复杂且动态变化的微环境,已知多种细胞类型之间的信号传导事件在肿瘤进展、侵袭和转移中起关键作用。为了加深对这种生物学的理解,需要在体外准确地模拟这些结构以用于基础研究和药物筛选。然而,目前的系统不能模拟体内细胞和基质的复杂组织。这项技术的愿景是开发和商业化更多的生物相关模型,用于旁分泌环路信号传导,特别是关于癌症转移。该I-Corps团队认为,所提出的技术可以用于高通量药物筛选平台,这些平台只需几秒钟即可制造组织支架,只需几天的孵育即可监测细胞偶联迁移效应。该团队还认为,这种快速和生物学相关的分析方法也可用于确定针对肿瘤相关巨噬细胞(TAM)的药物抑制的最佳药物浓度,以及其他细胞偶联迁移靶点。该技术目前处于原型阶段,I-Corps团队正在使用其他药物和浓度在乳腺癌/巨噬细胞系统中不断验证该技术。该团队还在探索这项技术是否可以作为迁移工具应用于其他细胞对系统。到目前为止,该团队还没有采取措施将该技术商业化。通过I-Corps计划,该团队计划与可能愿意使用拟议技术作为试运行服务的制药公司建立联系。该团队认为,这将最终成为其最低可行产品所需的技术演示。此外,他们计划在未来进一步探索其他商业化路线,例如集成测试试剂盒。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger West其他文献
On the permeability of the two-phase zone during solidification of alloys
- DOI:
10.1007/bf02814247 - 发表时间:
1985-04-01 - 期刊:
- 影响因子:2.500
- 作者:
Roger West - 通讯作者:
Roger West
Roger West的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger West', 18)}}的其他基金
I-Corps: Reducing and Managing spring frost damage
I-Corps:减少和管理春季霜冻损害
- 批准号:
1824074 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Commercialization Feasibility Research for a Rigid Support System
I-Corps:刚性支撑系统的商业化可行性研究
- 批准号:
1734697 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Developing the Value Proposition for the Rapid Detection and Classification of Designer Drugs
I-Corps:制定设计药物快速检测和分类的价值主张
- 批准号:
1632224 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Rapid Free-Breathing 3D High-Resolution MRI for Volumetric Liver Iron Quantification
用于体积肝铁定量的快速自由呼吸 3D 高分辨率 MRI
- 批准号:
10742197 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Multispectral rapid 3D super-resolution imaging of nuclear biology
核生物学多光谱快速 3D 超分辨率成像
- 批准号:
BB/X019705/1 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Rapid prototyping of PIV-compatible vascular models using 3D printing
使用 3D 打印快速制作 PIV 兼容血管模型原型
- 批准号:
574426-2022 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
University Undergraduate Student Research Awards
3D Cine Magnetic Resonance Fingerprinting for Rapid Phenotyping of Cardiomyopathy
3D 电影磁共振指纹图谱用于心肌病的快速表型分析
- 批准号:
10626789 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Study on the utilizing technology of rapid measurement and 3D Lissajous figure for reconstruction support of houses damaged by natural disasters
利用快速测量和三维利萨如图技术支持自然灾害房屋重建
- 批准号:
22K18846 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A Rapid Carotid Atherosclerotic Disease Assessment System with 3D MRI
具有 3D MRI 的颈动脉粥样硬化疾病快速评估系统
- 批准号:
10383271 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10670956 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10509562 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
An ultra-rapid 3D imaging method for crop root systems in soil using image processing
利用图像处理对土壤中作物根系进行超快速 3D 成像方法
- 批准号:
22K14871 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Rapid 3D Bioprinting of Cell-Laden Neurotrophic Factory Gradient Conduit for Neural Tissue Regeneration and Functional Recovery
快速 3D 生物打印充满细胞的神经营养工厂梯度导管,用于神经组织再生和功能恢复
- 批准号:
10610726 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别: