EMSW21-RTG-Program in low-dimensional topology and its applications

低维拓扑中的EMSW21-RTG-程序及其应用

基本信息

  • 批准号:
    0636643
  • 负责人:
  • 金额:
    $ 124.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0636643Principal Investigator: Alan W. Reid, Robert E. Gompf,Cameron M. Gordon, John E. LueckeThis RTG proposal is focused on training in low-dimensionaltopology and its applications. The study of low-dimensionalmanifolds has become one of the central areas of researchactivity in mathematics. The PI's have an establishedtrack-record of research accomplishments in several differentareas of low-dimensional topology; for example knot theory, 3 and4-manifold topology, hyperbolic manifolds and symplectictopology. The project will also allow the PI's to continue theirtraining of postdocs and students. The subject of this RTGProposal interacts with several other branches of mathematics aswell as the applied sciences. It therefore provides fertileground for research, education and training experiences at alllevels.One of the main features of the proposal is to build, andelevate, the successful structure for training and educationcurrently in place in the Department of Mathematics. However, animportant new component of our proposal is training forinterdisciplinary research. This will afford postdocs, graduateand undergraduate students educational and training experiencesdifferent from the traditional ones available at present. Wetherefore aim to provide a framework that supports education andtraining by instruction in the traditional sense, and alsoprovide opportunity for training experiences in applications oftopology in the physical and biological sciences. As part of thislatter effort the project will promote interactions withscientists studying knotting phenomena in DNA and biomedicalmathematics. As part of our outreach efforts, we will instigatea public lecture series that will raise the profile and level ofawareness of the role of topology in other sciences in theUniversity and local community.
摘要奖:DMS-0636643主要研究者:Alan W.作者声明:Robert E. Gompf,卡梅隆M.作者:John E. LueckeRTG的建议主要集中在低维拓扑及其应用的训练上。 低维流形的研究已成为数学研究的中心领域之一。 PI在低维拓扑学的几个不同领域都有研究成果,例如纽结理论,3和4流形拓扑,双曲流形和辛拓扑。 该项目还将允许PI继续他们对博士后和学生的培训。这个RTGProposal的主题与数学的其他几个分支以及应用科学相互作用。 因此,它为各级研究、教育和培训经验提供了肥沃的土壤。该提案的主要特点之一是建立和改进数学系目前成功的培训和教育结构。然而,我们建议的一个重要的新组成部分是跨学科研究的培训。 这将为博士后、研究生和本科生提供不同于目前传统的教育和培训经验。 因此,我们的目标是提供一个框架,支持传统意义上的教学教育和培训,并提供机会,在物理和生物科学中的应用拓扑学的培训经验。作为后者努力的一部分,该项目将促进与研究DNA和生物医学数学中打结现象的科学家的互动. 作为我们推广工作的一部分,我们将发起一个公开讲座系列,这将提高在大学和当地社区的其他科学拓扑学的作用的形象和意识水平。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Reid其他文献

High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome
疑似急性冠状动脉综合征患者就诊时的高敏心肌肌钙蛋白 I
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anoop S. V. Shah;A. Anand;Y. Sandoval;K. K. Lee;Stephen W. Smith;P. Adamson;A. Chapman;Timothy Langdon;D. Sandeman;Amar Vaswani;F. Strachan;A. Ferry;A. Stirzaker;Alan Reid;A. Gray;P. Collinson;D. McAllister;F. Apple;D. Newby;N. Mills
  • 通讯作者:
    N. Mills
High-Sensitivity Cardiac Troponin on Presentation to Rule Out Myocardial Infarction
高敏心肌肌钙蛋白检查可排除心肌梗塞
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills
  • 通讯作者:
    N. Mills
Relational Symmetries of Disaster Resilience Explored Through the Sendai Framework’s Guiding Principles
通过仙台框架的指导原则探讨灾害恢复力的关系对称性
High-sensitivity cardiac troponin on presentation to rule out myocardial infarction: a stepped-wedge cluster randomised controlled trial
高敏心肌肌钙蛋白可排除心肌梗死:阶梯楔形集群随机对照试验
  • DOI:
    10.1101/2020.09.06.20189308
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills
  • 通讯作者:
    N. Mills
Renewing the public and the role of research in education

Alan Reid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Reid', 18)}}的其他基金

Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
Representations and Rigidity
表述和刚性
  • 批准号:
    1812397
  • 财政年份:
    2018
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
  • 批准号:
    1755177
  • 财政年份:
    2017
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
Geometric Group Theory and Low-Dimensional Topology: Recent Connections and Advances
几何群论和低维拓扑:最新联系和进展
  • 批准号:
    1624301
  • 财政年份:
    2016
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
Workshop on mapping class groups of surfaces and outer automorphism groups of free groups
曲面类群映射和自由群外自同构群研讨会
  • 批准号:
    1542752
  • 财政年份:
    2015
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
  • 批准号:
    1463740
  • 财政年份:
    2015
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
Moduli spaces, Extremality and Global Invariants
模空间、极值和全局不变量
  • 批准号:
    1305448
  • 财政年份:
    2013
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Standard Grant
Covering spaces of 3-manifolds and representations of their fundamental groups
3-流形的覆盖空间及其基本群的表示
  • 批准号:
    1105002
  • 财政年份:
    2011
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
Interactions between the geometry of Banach spaces and other areas
Banach 空间的几何形状与其他区域之间的相互作用
  • 批准号:
    0968813
  • 财政年份:
    2010
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
Finite covers of hyperbolic 3-manifolds
双曲3流形的有限覆盖
  • 批准号:
    0805828
  • 财政年份:
    2008
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant

相似海外基金

RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
  • 批准号:
    2342225
  • 财政年份:
    2024
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
  • 批准号:
    2342254
  • 财政年份:
    2024
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
RTG: Frontiers in Applied Analysis
RTG:应用分析前沿
  • 批准号:
    2342349
  • 财政年份:
    2024
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
RTG: Geometry, Group Actions, and Dynamics at Wisconsin
RTG:威斯康星州的几何、群体行动和动力学
  • 批准号:
    2230900
  • 财政年份:
    2023
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
RTG: Vertically Integrated Interdisciplinary Training in Mathematics for Human Health
RTG:人类健康数学垂直整合跨学科培训
  • 批准号:
    2230790
  • 财政年份:
    2023
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
RTG: Research Training Group in Logic and its Application
RTG:逻辑及其应用研究培训小组
  • 批准号:
    2231414
  • 财政年份:
    2023
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
RTG: The Mathematics of Quantum Information Science
RTG:量子信息科学的数学
  • 批准号:
    2231533
  • 财政年份:
    2023
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
RTG: Numerical Mathematics and Scientific Computing
RTG:数值数学和科学计算
  • 批准号:
    2231482
  • 财政年份:
    2023
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
RTG: Topology, Representation Theory, and Mathematical Physics at Louisiana State University
RTG:路易斯安那州立大学拓扑学、表示论和数学物理
  • 批准号:
    2231492
  • 财政年份:
    2023
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
RTG: Linked via L-functions: training versatile researchers across number theory
RTG:通过 L 函数链接:跨数论培训多才多艺的研究人员
  • 批准号:
    2231514
  • 财政年份:
    2023
  • 资助金额:
    $ 124.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了