Model-based mesh-to-grid image resampling with application to robust object detection, recognition and tracking
基于模型的网格到网格图像重采样,应用于稳健的对象检测、识别和跟踪
基本信息
- 批准号:402837983
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Detection, recognition and tracking of objects are common tasks in video processing and they are widely used in various fields ranging from surveillance and medical imaging to automotive and entertainment industry. These tasks are, however, highly sensitive to image degradations such as low resolution input data, noise or optical and perspective distortions. In fact, when such common image conditions are faced, the performance of detection, recognition and tracking is severely deteriorated and it may also completely fail. To tackle this problem, input frames are typically preprocessed in order to counteract the effects of these adverse image conditions. First, input frames are registered. This registration typically operates with sub-pixel accuracy so the registered samples are located at arbitrary non-integer positions, called mesh. Hence, in a second step, mesh-to-grid resampling is applied. It consists of reconstructing the pixels on the regular 2D grid from the available mesh of samples and it conditions the resulting quality. Current solutions for resampling show significant low-pass behaviour and tend to introduce various visual artefacts which produce considerable and even irrecoverable errors during detection, recognition and tracking. Therefore, the goal of this project is to develop a robust high-quality mesh-to-grid resampling technique in order to leverage object detection, recognition and tracking. We take advantage of the so called frequency selective mesh-to-grid resampling algorithm which is an iterative procedure that generates an image model using a set of suitable basis functions. This technique exhibits an excellent performance in an ideal error-free environment. However, the performance of this algorithm drops drastically in real world scenarios where estimation errors during registration are involved. These scenarios shall be analysed by theoretical considerations in order to develop mechanisms to deal with these errors, to stabilise the output and to make it robust against noisy input data. The developed mesh-to-grid resampling technique will be tested for various detection, recognition and tracking applications. We expect to boost the performance of detection, recognition and tracking and make them correctly function in scenarios where other resamplers currently lead to failure. Finally, the obtained algorithms as well as the simulation framework will be made available to the scientific community in form of a software toolbox.
目标的检测、识别和跟踪是视频处理中的常见任务,它们广泛应用于从监控和医学成像到汽车和娱乐行业的各个领域。然而,这些任务对图像劣化高度敏感,例如低分辨率输入数据、噪声或光学和透视失真。事实上,当面对这样常见的图像条件时,检测、识别和跟踪的性能严重恶化,也可能完全失败。为了解决这个问题,通常对输入帧进行预处理,以抵消这些不利图像条件的影响。首先,登记输入帧。这种配准通常以子像素精度操作,因此配准的样本位于任意非整数位置,称为网格。因此,在第二步中,应用网格到网格的重新排序。它包括从样本的可用网格重建规则2D网格上的像素,并调节所得质量。目前的解决方案,resolution显示出显着的低通行为,并往往会引入各种视觉伪影,产生相当大的,甚至是不可恢复的错误,在检测,识别和跟踪。因此,该项目的目标是开发一种强大的高质量网格到网格的重新定位技术,以利用对象检测,识别和跟踪。我们利用所谓的频率选择性网格重建算法,这是一个迭代过程,使用一组合适的基函数生成一个图像模型。该技术在理想的无差错环境中表现出优异的性能。然而,该算法的性能急剧下降,在真实的世界的场景中,在注册过程中的估计误差参与。应通过理论考虑对这些情景进行分析,以便制定处理这些错误的机制,稳定输出并使其对噪声输入数据具有鲁棒性。开发的网格重新定位技术将进行测试,用于各种检测,识别和跟踪应用。我们希望提高检测,识别和跟踪的性能,并使它们在其他重采样器当前导致失败的情况下正确运行。最后,所获得的算法以及模拟框架将以软件工具箱的形式提供给科学界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. André Kaup其他文献
Professor Dr.-Ing. André Kaup的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. André Kaup', 18)}}的其他基金
Video Coding for Deep Learning-Based Machine-to-Machine Communication
基于深度学习的机器对机器通信的视频编码
- 批准号:
426084215 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Projection-Based Ultra Wide-Angle and 360° Video Coding
基于投影的超广角和 360° 视频编码
- 批准号:
418866191 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Reconstruction of Irregularly Sampled Image Signals Using Sparse Representations
使用稀疏表示重建不规则采样图像信号
- 批准号:
225074913 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Efficient Scalable Analysis and Coding of Hypervolume Data
超容量数据的高效可扩展分析和编码
- 批准号:
175165638 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Extrapolation mehrdimensionaler diskreter Signale und deren Anwendung in der Bild- und Videokommunikation
多维离散信号外推及其在图像视频通信中的应用
- 批准号:
5446991 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
Camera Array for Hyperspectral Video Imaging Using Cross-Spectral Multi-View Fusion
使用跨光谱多视图融合进行高光谱视频成像的相机阵列
- 批准号:
491814627 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Advanced Image Sensing Using Arbitrarily Shaped Pixels and Neural Network Reconstruction
使用任意形状的像素和神经网络重建的高级图像传感
- 批准号:
516695992 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Learning-Based Wavelet Video Coding Using Deep Adaptive Lifting
使用深度自适应提升的基于学习的小波视频编码
- 批准号:
461649014 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Losless and lossy compression of screen-content data using machine learning
使用机器学习对屏幕内容数据进行无损和有损压缩
- 批准号:
438221930 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
- 批准号:
24K20794 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis and Implementation of Parallel Solvers for PDE Based Mesh Generation and Coupled Systems
基于偏微分方程的网格生成和耦合系统并行求解器的分析与实现
- 批准号:
RGPIN-2018-04881 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Mechanism-guided drug repurposing for host-directed therapy of infectious diseases using interpretable and integrative ML
使用可解释和集成的机器学习机制引导的药物再利用,用于针对宿主的传染病治疗
- 批准号:
10442808 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Mechanism-guided drug repurposing for host-directed therapy of infectious diseases using interpretable and integrative ML
使用可解释和集成的机器学习机制引导的药物再利用,用于针对宿主的传染病治疗
- 批准号:
10619589 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Analysis and Implementation of Parallel Solvers for PDE Based Mesh Generation and Coupled Systems
基于偏微分方程的网格生成和耦合系统并行求解器的分析与实现
- 批准号:
RGPIN-2018-04881 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Linear Equations Solver for Domain Decomposition Based Parallel Finite Element Methods with Inconsistent Mesh
具有不一致网格的基于域分解的并行有限元方法的线性方程求解器
- 批准号:
20K19813 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis and Implementation of Parallel Solvers for PDE Based Mesh Generation and Coupled Systems
基于偏微分方程的网格生成和耦合系统并行求解器的分析与实现
- 批准号:
RGPIN-2018-04881 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual