Advanced Image Sensing Using Arbitrarily Shaped Pixels and Neural Network Reconstruction
使用任意形状的像素和神经网络重建的高级图像传感
基本信息
- 批准号:516695992
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Objective of this project is the systematic conception of novel image sensors with non-regularly shaped pixels and the design of neural network-based image reconstruction techniques. Thereby the image quality shall be significantly improved compared to regular square pixels in combination with state-of-the-art single-image super-resolution algorithms while retaining the same number of samples. Non-regular sampling has advantages over regular sampling as it can result in higher resolution per sampled pixel. An application in image processing is a sensor concept called 1/4 sampling. In 1/4 sampling, each square pixel of an image sensor is covered such that only one randomly chosen quadrant is left transparent. Since the fill factor is decreased by a factor of four that way, and 75 % of the incoming light is lost in such an implementation, solutions were searched to keep the non-regularity while increasing the fill factor. One promising way that is investigated in this project is the usage of non-regularly shaped pixels covering the full sensor area at 100 % fill factor. There are several tilings of areas available that are promising for this task. In contrast to a regular sensor with square pixels, the measured data needs to be processed to reconstruct the image on a regular grid. While a model-based approach for similar tasks is known, we are planning to expand this to the usage of neural networks as these have shown promising results in related fields of research. The use of neural networks for non-regular sampling has been poorly investigated and is promising. Such, the new sensor layouts combined with new neural network-based reconstruction methods have great potential for novel higher resolution camera sensors.
本项目的目标是系统地提出具有不规则形状像素的新型图像传感器的概念,并设计基于神经网络的图像重建技术。因此,与常规正方形像素相比,结合最先进的单幅图像超分辨率算法,在保持相同样本数量的情况下,图像质量将得到显着改善。非规则采样比规则采样具有优势,因为它可以产生更高的每采样像素分辨率。图像处理中的一个应用是称为1/4采样的传感器概念。在1/4采样中,图像传感器的每个正方形像素都被覆盖,以便只有一个随机选择的象限保持透明。由于填充因子以这种方式减少了四倍,并且在这样的实现中损失了75%的入射光,因此寻找了解决方案以在增加填充因子的同时保持非规则性。本项目研究的一种有希望的方法是使用非规则形状的像素以100%的填充系数覆盖整个传感器区域。对于这项任务,有几个可用的领域是有希望的。与正方形像素的常规传感器不同,测量数据需要经过处理才能在规则网格上重建图像。虽然已知针对类似任务的基于模型的方法,但我们计划将其扩展到神经网络的使用,因为这些方法在相关研究领域显示了令人振奋的结果。神经网络用于非规则抽样的研究一直很少,但前景看好。因此,新的传感器布局与新的基于神经网络的重建方法相结合,具有开发新型更高分辨率相机传感器的巨大潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. André Kaup其他文献
Professor Dr.-Ing. André Kaup的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. André Kaup', 18)}}的其他基金
Video Coding for Deep Learning-Based Machine-to-Machine Communication
基于深度学习的机器对机器通信的视频编码
- 批准号:
426084215 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Projection-Based Ultra Wide-Angle and 360° Video Coding
基于投影的超广角和 360° 视频编码
- 批准号:
418866191 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Model-based mesh-to-grid image resampling with application to robust object detection, recognition and tracking
基于模型的网格到网格图像重采样,应用于稳健的对象检测、识别和跟踪
- 批准号:
402837983 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Reconstruction of Irregularly Sampled Image Signals Using Sparse Representations
使用稀疏表示重建不规则采样图像信号
- 批准号:
225074913 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Efficient Scalable Analysis and Coding of Hypervolume Data
超容量数据的高效可扩展分析和编码
- 批准号:
175165638 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Extrapolation mehrdimensionaler diskreter Signale und deren Anwendung in der Bild- und Videokommunikation
多维离散信号外推及其在图像视频通信中的应用
- 批准号:
5446991 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
Camera Array for Hyperspectral Video Imaging Using Cross-Spectral Multi-View Fusion
使用跨光谱多视图融合进行高光谱视频成像的相机阵列
- 批准号:
491814627 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Learning-Based Wavelet Video Coding Using Deep Adaptive Lifting
使用深度自适应提升的基于学习的小波视频编码
- 批准号:
461649014 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Losless and lossy compression of screen-content data using machine learning
使用机器学习对屏幕内容数据进行无损和有损压缩
- 批准号:
438221930 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
- 批准号:41904148
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
Raw-Image微小物体高精度位姿测量法
- 批准号:61105029
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Soft colloidal quantum Wells IMage Sensing (SWIMS)
软胶体量子井图像传感 (SWIMS)
- 批准号:
EP/V039717/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Development of machine-learning type odor sensing technology by integrating image output type sensor and molecular sieve mechanism
开发集成图像输出型传感器和分子筛机构的机器学习型气味传感技术
- 批准号:
21K18718 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Precise 3-D remote sensing using multi-spectral image estimation and accurate 3-D reconstruction
使用多光谱图像估计和精确的 3D 重建进行精确的 3D 遥感
- 批准号:
20K06319 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ultra low-latency video coding for 8K high-resolution image sensing
用于 8K 高分辨率图像传感的超低延迟视频编码
- 批准号:
20H04181 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Compact omnidirectional lensless camera by sparse image sensors and compressive sensing
采用稀疏图像传感器和压缩传感的紧凑型全向无镜头相机
- 批准号:
20K21808 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Adaptive High-speed Space Sensing and Safe Landing Control System for Aerial Robot Using High-speed Image Processing
基于高速图像处理的空中机器人自适应高速空间感知与安全着陆控制系统
- 批准号:
20J22318 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Interpolation of vegetation remote sensing images and anomaly detection using deep learning image generation technology
利用深度学习图像生成技术对植被遥感图像进行插值和异常检测
- 批准号:
20K21345 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Dealing with limited remote sensing training data by image synthesis and transfer learning applied to disaster flood mapping
通过图像合成和迁移学习处理有限的遥感训练数据应用于灾害洪水测绘
- 批准号:
20K19834 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Real-Time Outdoor Image Generation using Non-visual Sensing Information
使用非视觉传感信息实时生成室外图像
- 批准号:
19K12019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generative Adversarial Networks Based Multi-Sensor Remote Sensing Image Translation for Disaster Damage Mapping
基于生成对抗网络的多传感器遥感图像翻译用于灾害损失测绘
- 批准号:
19K20308 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists