Learning-Based Wavelet Video Coding Using Deep Adaptive Lifting

使用深度自适应提升的基于学习的小波视频编码

基本信息

项目摘要

Learning-based methods resulting from artificial intelligence have been used successfully in various fields of image and video processing. In the field of lossy image compression significant progress regarding the rate-distortion performance compared to classic image coders has been achieved as well. This ratio describes the maximum achievable compression for a certain reproduction fidelity. Moreover, classic image and video coders are based on the concept of variable rates. This allows for providing various bit rates in dependence of the desired reconstruction quality. An exemplary use case can be described by supplying networks with varying channel capacities with the same codec. Current end-to-end trained learning-based methods are characterized by their good signal adaptivity, resulting in an improved compression performance compared to classic approaches. However, a crucial disadvantage is given by the lack of understanding regarding the manner of functioning of neural networks, which is caused by the fact that deep learning architectures are usually not designed systematically but manually in a trial-and-error fashion. Moreover, the training of neural networks requires large computational complexity, since variable rates are usually obtained by training multiple models separately. Therefore, in this research proposal a novel variable rate learning-based video coder shall be developed using motion compensated wavelet lifting. Besides rate adaptivity, spatial and temporal scalability is achieved, resulting in a fully scalable bit stream. This method is based on the so-called lifting structure offering the advantage of applying any non-linear operation without harming the reconstruction property of the transform. This also enables the possibility of implementing neural networks within the lifting structure and, thereby, increases the efficiency of the wavelet lifting. Learned wavelet coefficients are expected to achieve a better signal adaptivity and data compaction. In contrast to end-to-end trained methods, a further advantage of the proposed approach is given by the better understanding regarding the manner of functioning of neural networks due to the well-known architecture of the lifting structure. Thereby, changes in the network architectures can directly be tracked and interpreted. Moreover, the lifting structure is characterized by providing a fully in-place calculation, which does not need any auxiliary memory. Applying such a deep adaptive lifting structure to video compression has not been considered so far and describes a promising new concept for learning-based video compression, combining variable rates and high interpretability in one model.
人工智能产生的基于学习的方法已经成功地应用于图像和视频处理的各个领域。在有损图像压缩领域,与经典图像编码器相比,在率失真性能方面也取得了重大进展。这个比率描述了在一定的再现保真度下所能达到的最大压缩。此外,经典的图像和视频编码器是基于可变速率的概念。这允许提供不同的比特率依赖于所需的重建质量。可以通过使用相同的编解码器提供具有不同信道容量的网络来描述示例性用例。当前基于端到端训练学习的方法具有良好的信号自适应性,与经典方法相比,压缩性能有所提高。然而,一个关键的缺点是缺乏对神经网络功能方式的理解,这是由于深度学习架构通常不是系统地设计的,而是以试错的方式手动设计的。此外,神经网络的训练需要很大的计算复杂度,因为变量率通常是通过单独训练多个模型来获得的。因此,本研究建议采用运动补偿小波提升技术,开发一种基于可变速率学习的视频编码器。除了速率自适应外,还实现了空间和时间的可扩展性,从而实现了完全可扩展的比特流。该方法基于所谓的提升结构,其优点是适用于任何非线性操作而不损害变换的重建特性。这也使得在提升结构中实现神经网络成为可能,从而提高了小波提升的效率。学习到的小波系数有望达到更好的信号自适应和数据压缩。与端到端训练方法相比,由于众所周知的升降结构结构,所提出的方法的进一步优势在于对神经网络功能方式的更好理解。因此,可以直接跟踪和解释网络体系结构中的变化。此外,提升结构的特点是提供完全就地计算,不需要任何辅助存储器。将这种深度自适应提升结构应用到视频压缩中迄今为止还没有被考虑过,它描述了一个有前途的基于学习的视频压缩新概念,在一个模型中结合了可变速率和高可解释性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. André Kaup其他文献

Professor Dr.-Ing. André Kaup的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. André Kaup', 18)}}的其他基金

Video Coding for Deep Learning-Based Machine-to-Machine Communication
基于深度学习的机器对机器通信的视频编码
  • 批准号:
    426084215
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Projection-Based Ultra Wide-Angle and 360° Video Coding
基于投影的超广角和 360° 视频编码
  • 批准号:
    418866191
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Model-based mesh-to-grid image resampling with application to robust object detection, recognition and tracking
基于模型的网格到网格图像重采样,应用于稳健的对象检测、识别和跟踪
  • 批准号:
    402837983
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Reconstruction of Irregularly Sampled Image Signals Using Sparse Representations
使用稀疏表示重建不规则采样图像信号
  • 批准号:
    225074913
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Efficient Scalable Analysis and Coding of Hypervolume Data
超容量数据的高效可扩展分析和编码
  • 批准号:
    175165638
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Extrapolation mehrdimensionaler diskreter Signale und deren Anwendung in der Bild- und Videokommunikation
多维离散信号外推及其在图像视频通信中的应用
  • 批准号:
    5446991
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Camera Array for Hyperspectral Video Imaging Using Cross-Spectral Multi-View Fusion
使用跨光谱多视图融合进行高光谱视频成像的相机阵列
  • 批准号:
    491814627
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Advanced Image Sensing Using Arbitrarily Shaped Pixels and Neural Network Reconstruction
使用任意形状的像素和神经网络重建的高级图像传感
  • 批准号:
    516695992
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Losless and lossy compression of screen-content data using machine learning
使用机器学习对屏幕内容数据进行无损和有损压缩
  • 批准号:
    438221930
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
  • 批准号:
    81900115
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Reality-based Interaction用户界面模型和评估方法研究
  • 批准号:
    61170182
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
  • 批准号:
    30470665
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
  • 批准号:
    60376005
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

A lossless digital image watermarking based on lifting wavelet transform
基于提升小波变换的无损数字图像水印
  • 批准号:
    21K17744
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An estimation of scaling parameters in signals or images based on wavelet analysis
基于小波分析的信号或图像中尺度参数的估计
  • 批准号:
    21K03351
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of agricultural land use and land cover changes in the Canadian Prairies using multitemporal remote sensing: A wavelet-based image fusion and machine learning approach
使用多时相遥感识别加拿大大草原的农业用地和土地覆盖变化:基于小波的图像融合和机器学习方法
  • 批准号:
    544909-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Image feature extraction based on wavelet, topological data analysis, deep learning, and its theory
基于小波、拓扑数据分析、深度学习的图像特征提取及其理论
  • 批准号:
    19K03623
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of wavelet-based conditional sampling and averaging method and the application to the noise source identification of supersonic jet broadband noise
基于小波的条件采样平均方法的发展及其在超音速喷气宽带噪声噪声源识别中的应用
  • 批准号:
    18H01621
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Wavelet Based Cognitive UWB Sensors for Smart Tunnels
用于智能隧道的基于小波的认知 UWB 传感器
  • 批准号:
    490434-2015
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Image separation based on wavelet analysis
基于小波分析的图像分离
  • 批准号:
    17K05363
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multiscale and wavelet based signal processing for electrophysiological and optical brain imaging
用于电生理学和光学脑成像的多尺度和基于小波的信号处理
  • 批准号:
    238902-2012
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Wavelet Based Cognitive UWB Sensors for Smart Tunnels
用于智能隧道的基于小波的认知 UWB 传感器
  • 批准号:
    490434-2015
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Digital image watermarking for authentication based on the lifting wavelet transform
基于提升小波变换的数字图像水印认证
  • 批准号:
    16H07404
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了