DMREF: Collaborative Research: Design of active ink for 3D printing: integrating modeling and experiments

DMREF:协作研究:3D 打印活性墨水设计:建模与实验相结合

基本信息

  • 批准号:
    1628411
  • 负责人:
  • 金额:
    $ 63.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

This award supports a multidisciplinary team of four investigators using modeling, analysis, computer simulations, and experiments to study using suspensions of active particles to enhance the properties of inks for applications in 3D printing. Active materials represented by suspensions of synthetic self-propelled particles harvest energy from their environment and alter the properties of the surrounding fluid. They have novel materials properties and promising applications. Here, a new concept of ink for 3D printing, termed "active ink", is introduced. Even a small fraction of active self-propelled particles in a fluid results in a dramatic reduction of viscosity, enhancing ink transport through the nozzle and increasing printing speed. This project will facilitate the design and manufacture of new materials, significantly shortening the path from prototype to product. This research will also enable a highly multidisciplinary training and education of students and postdocs who will learn theoretical techniques in applied mathematics and computations, as well as experimental techniques employed in chemistry and nanofabrication. Apart from the development of new 3D printing technology, the work will lead to novel mathematical models and efficient computational algorithms.A drastic reduction of effective viscosity and increase of self-diffusivity of the active ink due to the presence of synthetic self-propelled particles will be studied. The reduction of the effective viscosity will enhance ink transport through the nozzle. The increase of the effective self-diffusivity will enable faster polymerization resulting in resolution enhancement and more accurate 3D feature design. In addition, due to their fundamentally different response to applied shear flow, the use of active particles may lead to the design of composite materials with novel distributions of particles. The functionalization of active particles also will allow tuning the properties of the hardened polymer. New mathematical models will be developed and analyzed both numerically and analytically. Their predictions will be experimentally verified. The continuum partial differential equation model based on kinetic theory will be analyzed asymptotically and numerically. A key challenge here is to find stationary flow solutions by employing methods from fixed-point and topological degree theory. In simulations of particle-based models, the challenge is to accurately capture the dynamics of the reaction that occurs as the active rods move. A difficulty in simulations of the continuum model is incorporating the molecular-scale reactions into a mesoscale approach. By addressing these challenges, the utility and applicability of these computational methods will be significantly expanded, allowing them to be used for simulating a broad range of multi-component, dynamical systems.
该奖项支持一个由四名研究人员组成的多学科团队,他们使用建模、分析、计算机模拟和实验来研究使用活性颗粒悬浮液来增强3D打印应用中油墨的性能。活性材料以合成的自推进粒子悬浮液为代表,从环境中获取能量,并改变周围流体的性质。它们具有新颖的材料特性和广阔的应用前景。在这里,介绍了一种用于3D打印的新概念墨水,称为“活性墨水”。即使流体中有一小部分活性自推进颗粒也会导致粘度急剧降低,从而增强油墨通过喷嘴的传输并提高打印速度。该项目将促进新材料的设计和制造,大大缩短从原型到产品的路径。这项研究还将为学生和博士后提供高度多学科的培训和教育,他们将学习应用数学和计算方面的理论技术,以及化学和纳米制造方面的实验技术。除了开发新的3D打印技术外,这项工作还将导致新的数学模型和高效的计算算法。研究了合成自推进粒子对活性油墨有效粘度的急剧降低和自扩散率的增加。有效粘度的降低将增强油墨通过喷嘴的输送。有效自扩散率的增加将使聚合更快,从而提高分辨率和更精确的3D特征设计。此外,由于它们对施加的剪切流的响应具有根本的不同,活性颗粒的使用可能导致具有新颖颗粒分布的复合材料的设计。活性颗粒的功能化也将允许调整硬化聚合物的性质。新的数学模型将被开发和分析数值和分析。他们的预测将在实验中得到证实。对基于动力学理论的连续统偏微分方程模型进行了渐近和数值分析。这里的一个关键挑战是利用不动点和拓扑度理论的方法找到稳态流解。在基于粒子模型的模拟中,挑战在于准确捕捉活性杆移动时发生的反应动力学。模拟连续体模型的一个困难是将分子尺度的反应纳入中尺度方法。通过解决这些挑战,这些计算方法的实用性和适用性将得到显著扩展,使它们能够用于模拟广泛的多组件动态系统。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self‐Propulsion and Shear Flow Align Active Particles in Nozzles and Channels
  • DOI:
    10.1002/aisy.202000178
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Leonardo Dominguez Rubio;M. Potomkin;R. Baker;Ayusman Sen;L. Berlyand;I. Aranson
  • 通讯作者:
    Leonardo Dominguez Rubio;M. Potomkin;R. Baker;Ayusman Sen;L. Berlyand;I. Aranson
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonid Berlyand其他文献

Focusing of active particles in a converging flow
汇聚流中活性粒子的聚焦
  • DOI:
    10.1088/1367-2630/aa94fd
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Mykhailo Potomkin;Andreas Kaiser;Leonid Berlyand;Igor S. Aranson
  • 通讯作者:
    Igor S. Aranson
On an evolution equation in a cell motility model
  • DOI:
    10.1016/j.physd.2015.10.008
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew S. Mizuhara;Leonid Berlyand;Volodymyr Rybalko;Lei Zhang
  • 通讯作者:
    Lei Zhang
A two scale $$\Gamma $$ -convergence approach for random non-convex homogenization
随机非凸均匀化的双尺度 Γ 收敛方法
Non-Gaussian Limiting Behavior of the Percolation Threshold in a Large System

Leonid Berlyand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonid Berlyand', 18)}}的其他基金

EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
  • 批准号:
    2401227
  • 财政年份:
    2024
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
Stability and Bifurcations in Free-Boundary Models of Active Gels
活性凝胶自由边界模型的稳定性和分岔
  • 批准号:
    2005262
  • 财政年份:
    2020
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
Control of Flagellated Bacteria Motion in Anisotropic Fluids
各向异性流体中带鞭毛细菌运动的控制
  • 批准号:
    1707900
  • 财政年份:
    2017
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Continuing Grant
Workshop on Interdisciplinary Mathematics
跨学科数学研讨会
  • 批准号:
    1522040
  • 财政年份:
    2015
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
Ginzburg-Landau type problems in superconductivity and cell motility
超导和细胞运动中的金兹堡-朗道型问题
  • 批准号:
    1405769
  • 财政年份:
    2014
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
PDEs and Dynamical Systems in Biology
生物学中的偏微分方程和动力系统
  • 批准号:
    1311726
  • 财政年份:
    2013
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
Two-Parameter Homogenization Problems in Superconductivity and Related Problems
超导中的二参数均匀化问题及相关问题
  • 批准号:
    1106666
  • 财政年份:
    2011
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
Homogenization of Ginzburg-Landau and Elasticity Problems and Related Questions
Ginzburg-Landau 的均质化和弹性问题及相关问题
  • 批准号:
    0708324
  • 财政年份:
    2007
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
Modeling of Multiscale Inhomogeneous Materials with Periodic and Random Microstructure
具有周期性和随机微观结构的多尺度非均匀材料建模
  • 批准号:
    0204637
  • 财政年份:
    2002
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Continuing Grant
Conference: Homogenization and Materials Science
会议:均质化与材料科学
  • 批准号:
    0072259
  • 财政年份:
    2000
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了