Two-Parameter Homogenization Problems in Superconductivity and Related Problems
超导中的二参数均匀化问题及相关问题
基本信息
- 批准号:1106666
- 负责人:
- 金额:$ 28.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
BerlyandDMS-1106666 The project is concerned with the theoretical development and applications of homogenization theory. This theory studies the properties of heterogeneous materials (primarily composites), which are of critical importance for modern technology. Fundamental questions are raised in the process of modeling such materials -- primarily in the fields of PDEs and Calculus of Variations. The work addresses special classes of homogenization problems where, in addition to the homogenization parameter, another small material parameter (e.g., the inverse Ginzburg-Landau parameter) is present. The results and techniques developed for two-parameter homogenization problems essentially depend on the relation between these parameters, and several such relations are considered. These problems are studied in the context of Ginzburg-Landau models for superconducting composites. Specifically, the investigator and his collaborators study pinning by holes in small superconducting samples. Here the main mathematical issue is the homogenization limit in a nonstandard discrete/continuum nonlinear finite-dimensional variational problem with integer constraints for the unknown family of degrees of vortices. The investigator and his collaborators develop Gamma convergence techniques for such problems. It is expected that the homogenization vorticity drastically depends on the relation between the geometrical parameters (size of the holes and distances between them) and the material parameter. In particular, the investigator and his collaborators look for special scaling relations, which result in vortices with multiple degrees. Also, the investigator and his collaborators develop novel techniques of Gamma-convergence for the study of nonlinear random homogenization problems. Applications of these techniques for material science problems are considered. One of the key issues is the identification of new effects due to randomness when compared to periodically located inclusions. The project is primarily motivated by the quest for energy-efficient materials that comprise a foundation for a new generation of superconductivity-based microelectronics. It utilizes Ginzburg-Landau models of superconductivity, describing their ability to carry electric current without power loss. In practical applications of superconductivity the passing current creates magnetic vortices that move, dissipate the energy, and destroy the superconducting state. Thus the central problem for practical application is the problem of immobilization of vortices, known among specialists as the problem of vortex pinning. The approach studied here offers an efficient tool to tackle this problem and to develop practical recipes for an artificial manufacturing pinning configuration in superconducting wires to crucially improve their performance. The project has a direct impact on the education and future careers of graduate students. They receive an interdisciplinary training through interactions with the investigator's collaborators at Argonne National Laboratory. Additionally, the investigator continues involving undergraduate students in his NSF-supported research projects.
BerlyandDMS-1106666 该项目涉及均质化理论的理论发展和应用。 该理论研究异质材料(主要是复合材料)的特性,这对于现代技术至关重要。 在对此类材料建模的过程中提出了一些基本问题——主要是偏微分方程和变分微积分领域。 这项工作解决了特殊类别的均质化问题,其中除了均质化参数之外,还存在另一个小材料参数(例如逆 Ginzburg-Landau 参数)。 针对双参数均质化问题开发的结果和技术本质上取决于这些参数之间的关系,并且考虑了几种这样的关系。 这些问题是在超导复合材料的金兹堡-朗道模型的背景下研究的。 具体来说,研究人员和他的合作者研究了小型超导样品中的孔钉扎现象。 这里的主要数学问题是非标准离散/连续非线性有限维变分问题中的均质化极限,该问题具有未知涡度族的整数约束。 研究人员和他的合作者开发了针对此类问题的伽玛收敛技术。 预计均匀化涡度很大程度上取决于几何参数(孔的尺寸和孔之间的距离)和材料参数之间的关系。 特别是,研究者和他的合作者寻找特殊的尺度关系,这会导致多级涡流。 此外,研究者和他的合作者开发了伽玛收敛的新技术来研究非线性随机均匀化问题。 考虑将这些技术应用于材料科学问题。 关键问题之一是与周期性定位的内含物相比,识别由于随机性而产生的新效应。 该项目的主要动机是寻求节能材料,为新一代基于超导的微电子学奠定基础。 它利用超导的金兹堡-朗道模型,描述了它们在不损失功率的情况下承载电流的能力。 在超导的实际应用中,通过的电流会产生磁涡流,磁涡流会移动、耗散能量并破坏超导状态。 因此,实际应用的核心问题是涡流固定问题,专家称为涡流钉扎问题。 这里研究的方法提供了一种有效的工具来解决这个问题,并为超导线材中的人工制造钉扎配置开发实用的配方,以显着提高其性能。 该项目对研究生的教育和未来职业生涯有直接影响。 他们通过与阿贡国家实验室的研究人员合作者的互动接受跨学科培训。 此外,研究人员继续让本科生参与他的国家科学基金会支持的研究项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Berlyand其他文献
Focusing of active particles in a converging flow
汇聚流中活性粒子的聚焦
- DOI:
10.1088/1367-2630/aa94fd - 发表时间:
2017 - 期刊:
- 影响因子:3.3
- 作者:
Mykhailo Potomkin;Andreas Kaiser;Leonid Berlyand;Igor S. Aranson - 通讯作者:
Igor S. Aranson
On an evolution equation in a cell motility model
- DOI:
10.1016/j.physd.2015.10.008 - 发表时间:
2016 - 期刊:
- 影响因子:
- 作者:
Matthew S. Mizuhara;Leonid Berlyand;Volodymyr Rybalko;Lei Zhang - 通讯作者:
Lei Zhang
Non-Gaussian Limiting Behavior of the Percolation Threshold in a Large System
- DOI:
10.1007/s002200050082 - 发表时间:
1997-04-01 - 期刊:
- 影响因子:2.600
- 作者:
Leonid Berlyand;Jan Wehr - 通讯作者:
Jan Wehr
A two scale $$\Gamma $$ -convergence approach for random non-convex homogenization
随机非凸均匀化的双尺度 Γ 收敛方法
- DOI:
10.1007/s00526-017-1249-y - 发表时间:
2017-10-06 - 期刊:
- 影响因子:2.000
- 作者:
Leonid Berlyand;Etienne Sandier;Sylvia Serfaty - 通讯作者:
Sylvia Serfaty
Leonid Berlyand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Berlyand', 18)}}的其他基金
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
- 批准号:
2401227 - 财政年份:2024
- 资助金额:
$ 28.45万 - 项目类别:
Standard Grant
Stability and Bifurcations in Free-Boundary Models of Active Gels
活性凝胶自由边界模型的稳定性和分岔
- 批准号:
2005262 - 财政年份:2020
- 资助金额:
$ 28.45万 - 项目类别:
Standard Grant
Control of Flagellated Bacteria Motion in Anisotropic Fluids
各向异性流体中带鞭毛细菌运动的控制
- 批准号:
1707900 - 财政年份:2017
- 资助金额:
$ 28.45万 - 项目类别:
Continuing Grant
DMREF: Collaborative Research: Design of active ink for 3D printing: integrating modeling and experiments
DMREF:协作研究:3D 打印活性墨水设计:建模与实验相结合
- 批准号:
1628411 - 财政年份:2016
- 资助金额:
$ 28.45万 - 项目类别:
Standard Grant
Workshop on Interdisciplinary Mathematics
跨学科数学研讨会
- 批准号:
1522040 - 财政年份:2015
- 资助金额:
$ 28.45万 - 项目类别:
Standard Grant
Ginzburg-Landau type problems in superconductivity and cell motility
超导和细胞运动中的金兹堡-朗道型问题
- 批准号:
1405769 - 财政年份:2014
- 资助金额:
$ 28.45万 - 项目类别:
Standard Grant
PDEs and Dynamical Systems in Biology
生物学中的偏微分方程和动力系统
- 批准号:
1311726 - 财政年份:2013
- 资助金额:
$ 28.45万 - 项目类别:
Standard Grant
Homogenization of Ginzburg-Landau and Elasticity Problems and Related Questions
Ginzburg-Landau 的均质化和弹性问题及相关问题
- 批准号:
0708324 - 财政年份:2007
- 资助金额:
$ 28.45万 - 项目类别:
Standard Grant
Modeling of Multiscale Inhomogeneous Materials with Periodic and Random Microstructure
具有周期性和随机微观结构的多尺度非均匀材料建模
- 批准号:
0204637 - 财政年份:2002
- 资助金额:
$ 28.45万 - 项目类别:
Continuing Grant
Conference: Homogenization and Materials Science
会议:均质化与材料科学
- 批准号:
0072259 - 财政年份:2000
- 资助金额:
$ 28.45万 - 项目类别:
Standard Grant
相似海外基金
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 28.45万 - 项目类别:
Research Grant
ERI: Intelligent Modeling and Parameter Selection in Distributed Optimization for Power Networks
ERI:电力网络分布式优化中的智能建模和参数选择
- 批准号:
2347120 - 财政年份:2024
- 资助金额:
$ 28.45万 - 项目类别:
Standard Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
- 批准号:
BB/Y51388X/1 - 财政年份:2024
- 资助金额:
$ 28.45万 - 项目类别:
Research Grant
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
- 批准号:
24K20737 - 财政年份:2024
- 资助金额:
$ 28.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Parameter identification with optimal experimental design for engineering biology
工程生物学优化实验设计的参数识别
- 批准号:
EP/Y00342X/1 - 财政年份:2024
- 资助金额:
$ 28.45万 - 项目类别:
Research Grant
Neuromodulators constrain the activity of neurons and neuronal networks by restricting their parameter space
神经调节器通过限制神经元和神经元网络的参数空间来限制其活动
- 批准号:
2320895 - 财政年份:2024
- 资助金额:
$ 28.45万 - 项目类别:
Continuing Grant
Development of performance parameter optimization tools for automatic tuning
自动调优性能参数优化工具开发
- 批准号:
23K11126 - 财政年份:2023
- 资助金额:
$ 28.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Smart Cuff: Multi-Parameter Hemodynamic Monitoring via a Single Convenient Device
智能袖带:通过单个便捷设备进行多参数血流动力学监测
- 批准号:
10583061 - 财政年份:2023
- 资助金额:
$ 28.45万 - 项目类别:
Investigating the age associated impact of mechanical parameter on CLR signaling
研究机械参数对 CLR 信号的年龄相关影响
- 批准号:
23K14541 - 财政年份:2023
- 资助金额:
$ 28.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Parameter-driven approach to cross-Bantu typology: Exploring the variation and universals in Bantu languages
跨班图类型学的参数驱动方法:探索班图语言的变异和共性
- 批准号:
23H00622 - 财政年份:2023
- 资助金额:
$ 28.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




