Conference: Homogenization and Materials Science

会议:均质化与材料科学

基本信息

  • 批准号:
    0072259
  • 负责人:
  • 金额:
    $ 1.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-06-15 至 2000-11-30
  • 项目状态:
    已结题

项目摘要

An International Conference, "Homogenization and Materials Science", inhonor of the late Professor Ulrich Hornung of Bundeswehr University Munich,Germany, will take place at the University of Akron, Akron, Ohio, duringSeptember 15 - 17, 2000. The purpose of this interdisciplinary conferenceis to bring together researchers from interacting areas of MaterialsScience. In particular special focus will be paid to the latest scientificand industrial developments concerning homogenization theory and methods.Homogenization is a powerful mathematical tool for solving, both static (effectiveproperties) and dynamic (wave propagation, transport equations) problems ininhomogeneous materials with periodic and random microstructure. Thisincludes prediction of mechanical and dielectrical properties ofcomposites, shape memory materials, materials undergoing phasetransitions, and polymeric composites. Solutions of these problems provideguidance in the design of new materials possessing the specific properties required by modern technological needs. The conference shall address both modeling and computational aspects of these problems. This conference will bringtogether the leading scientists from Europe and the U.S. who are working onhomogenization problems and applications in materials science.Modern electronic and mechanical devices require materials with specificproperties in their design. For example, the automotive industry seekslightweight yet very strong materials. Such materials do not necessarilyoccur naturally. Hence, these materials must be engineered from existingresources. One approach is to form a composite material. A compositematerial is made from a blend of other materials. Fundamental questions inthe design of composites are (1) what materials should be used to form thecomposite, (2) how much of each material should be used in the composite,and (3) how should the materials be combined to form the composite? In thelatter case the geometric patterns of the combined materials (think ofplywood) play an important role. Materials scientists and engineers try toanswer the above keeping in mind the specific properties required from theresulting composite. Practical experience and trial and error approachesare common means of obtaining answers. Within the past two decades manynew tools have been developed by the applied mathematics community to helpanswer these questions. These tools fall under the heading of what iscalled homogenization theory. One reason for holding this conference willbe to highlight the use of these new tools. A second purpose of theproposed conference will be to highlight the formulation and solution ofnew homogenization problems arising in materials design. For example, onearea that may further benefit from the utilization of homogenization toolsis polymer-based composites. Hence, the conference should help answer twoquestions: (1) what should be the future directions in homogenizationtheory based upon the current needs of modern technology (in short, whichproblems should be solved), and (2) what is the best way of utilizing newlydeveloped mathematical tools to solve these problems in order to enhancethe use of homogenization methods in materials design? These questionswill be answered through both speaker presentations and a panel discussion,which will summarize the current state of the subject and future trends.
为纪念德国慕尼黑联邦国防军大学已故教授Ulrich Hornung,将于2000年9月15日至17日在俄亥俄州阿克伦的阿克伦大学举行“均匀化与材料科学”国际会议。 这个跨学科会议的目的是汇集来自材料科学相互作用领域的研究人员。 特别是将特别关注有关均匀化理论和方法的最新科学和工业发展。均匀化是一个强大的数学工具,用于解决具有周期性和随机微观结构的非均匀材料的静态(有效性质)和动态(波传播,输运方程)问题。这包括复合材料、形状记忆材料、相变材料和聚合物复合材料的机械和介电性能的预测。这些问题的解决方案为设计具有现代技术需求所需的特定性能的新材料提供了指导。会议将讨论这些问题的建模和计算方面。本次会议将汇集来自欧洲和美国的顶尖科学家,他们致力于研究材料科学中的均匀化问题和应用。现代电子和机械设备在设计中需要具有特定性能的材料。 例如,汽车工业寻求强度小但非常坚固的材料。 这些物质不一定是天然存在的。 因此,这些材料必须从现有资源中进行设计。 一种方法是形成复合材料。 复合材料是由其他材料混合而成的。 复合材料设计中的基本问题是(1)应该使用什么材料来形成复合材料,(2)每种材料在复合材料中应该使用多少,以及(3)这些材料应该如何组合以形成复合材料。 在后一种情况下,组合材料的几何图案(想想胶合板)起着重要的作用。 材料科学家和工程师试图回答上述问题,同时牢记合成材料所需的特定性能。 实践经验和试错法是获得答案的常用方法。 在过去的二十年里,应用数学界开发了许多新的工具来帮助解决这些问题。 这些工具属于所谓的同质化理论的范畴。 举办这次会议的原因之一就是强调这些新工具的使用。 会议的第二个目的将是强调材料设计中出现的新的均匀化问题的制定和解决方案。 例如,一个可能进一步受益于均质化工具的领域是聚合物基复合材料。 因此,这次会议应该有助于回答两个问题:(1)基于现代技术的当前需求,均匀化理论的未来方向应该是什么(简而言之,应该解决哪些问题),以及(2)为了提高均匀化方法在材料设计中的应用,利用新开发的数学工具来解决这些问题的最佳方法是什么? 这些问题将通过演讲者的演讲和小组讨论来回答,小组讨论将总结该主题的当前状态和未来趋势。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonid Berlyand其他文献

Focusing of active particles in a converging flow
汇聚流中活性粒子的聚焦
  • DOI:
    10.1088/1367-2630/aa94fd
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Mykhailo Potomkin;Andreas Kaiser;Leonid Berlyand;Igor S. Aranson
  • 通讯作者:
    Igor S. Aranson
On an evolution equation in a cell motility model
  • DOI:
    10.1016/j.physd.2015.10.008
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew S. Mizuhara;Leonid Berlyand;Volodymyr Rybalko;Lei Zhang
  • 通讯作者:
    Lei Zhang
A two scale $$\Gamma $$ -convergence approach for random non-convex homogenization
随机非凸均匀化的双尺度 Γ 收敛方法
Non-Gaussian Limiting Behavior of the Percolation Threshold in a Large System

Leonid Berlyand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonid Berlyand', 18)}}的其他基金

EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
  • 批准号:
    2401227
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Stability and Bifurcations in Free-Boundary Models of Active Gels
活性凝胶自由边界模型的稳定性和分岔
  • 批准号:
    2005262
  • 财政年份:
    2020
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Control of Flagellated Bacteria Motion in Anisotropic Fluids
各向异性流体中带鞭毛细菌运动的控制
  • 批准号:
    1707900
  • 财政年份:
    2017
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative Research: Design of active ink for 3D printing: integrating modeling and experiments
DMREF:协作研究:3D 打印活性墨水设计:建模与实验相结合
  • 批准号:
    1628411
  • 财政年份:
    2016
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Workshop on Interdisciplinary Mathematics
跨学科数学研讨会
  • 批准号:
    1522040
  • 财政年份:
    2015
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Ginzburg-Landau type problems in superconductivity and cell motility
超导和细胞运动中的金兹堡-朗道型问题
  • 批准号:
    1405769
  • 财政年份:
    2014
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
PDEs and Dynamical Systems in Biology
生物学中的偏微分方程和动力系统
  • 批准号:
    1311726
  • 财政年份:
    2013
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Two-Parameter Homogenization Problems in Superconductivity and Related Problems
超导中的二参数均匀化问题及相关问题
  • 批准号:
    1106666
  • 财政年份:
    2011
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Homogenization of Ginzburg-Landau and Elasticity Problems and Related Questions
Ginzburg-Landau 的均质化和弹性问题及相关问题
  • 批准号:
    0708324
  • 财政年份:
    2007
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Modeling of Multiscale Inhomogeneous Materials with Periodic and Random Microstructure
具有周期性和随机微观结构的多尺度非均匀材料建模
  • 批准号:
    0204637
  • 财政年份:
    2002
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
  • 批准号:
    2350340
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Homogenization of random walks: degenerate environments and long-range jumps
随机游走的同质化:退化环境和长程跳跃
  • 批准号:
    EP/W022923/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Research Grant
A spatiotemporal data-driven homogenization approach for hierarchical modeling of multiphase frozen soil in permafrost
时空数据驱动的多年冻土多相冻土分层建模方法
  • 批准号:
    RGPIN-2019-06471
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Discovery Grants Program - Individual
Qualitative and quantitative analysis of non-periodic space-time homogenization problems for nonlinear diffusion equations
非线性扩散方程非周期时空均匀化问题的定性和定量分析
  • 批准号:
    22K20331
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Computational homogenization of soft composite plates and shells toward elucidating high-order geometrical pattern transformation
软复合材料板壳的计算均质化以阐明高阶几何图案变换
  • 批准号:
    22K14142
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Harmonic Analysis and Homogenization of Elliptic Equations in Perforated Domains
穿孔域椭圆方程的调和分析与齐次化
  • 批准号:
    2153585
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
  • 批准号:
    RGPIN-2018-06371
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Discovery Grants Program - Individual
Homogenization in Anomalous Diffusion Phenomena and its Applications to Inverse Problems
反常扩散现象的均匀化及其在反问题中的应用
  • 批准号:
    21K20333
  • 财政年份:
    2021
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Homogenization Methods in Statistical Physics
统计物理中的均质化方法
  • 批准号:
    2137909
  • 财政年份:
    2021
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Dynamics in Random Media: from Homogenization to Stochasticity
随机介质中的动力学:从同质化到随机性
  • 批准号:
    2203007
  • 财政年份:
    2021
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了