Modeling of Multiscale Inhomogeneous Materials with Periodic and Random Microstructure
具有周期性和随机微观结构的多尺度非均匀材料建模
基本信息
- 批准号:0204637
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-01 至 2008-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal #0204637PI: Leonid BerlyandInstitution: Penn State UniversityTitle: Modeling of Multiscale Inhomogeneous Materials with Periodic and Random MicrostructureABSRACTThe scientific core of this proposal is centered around four areas. Homogenization is the common theme of all four areas, and it is expected that the proposed work will result in the development of new homogenization techniques and tools. The first area concerns the discrete network approximation for highly packed high-contrast composites. The main objective is to characterize the dependence of the effective transport properties of composites on the shapes and random locations of the filling particles in a rigorous mathematical framework with a controlled error estimate. Our objective in the second area is to obtain analytical formulas for the effective properties of composites. Such formulas reveal the explicit dependence of the effective properties on geometrical and physical parameters and provide a valuable physical insight, which can be used to test numerical algorithms developed for generic situations. The important practical issue of polydispersity will be addressed from different perspectives in the first as well as the second area, and the results will be compared. The third area concerns the rheology of complex fluids such as polymeric composites, suspensions and micellar fluids. The main features here are: (i) the interaction between micellar tubes or balls, which leads to a drastic change in the effective constitutive equations as compared with the constitutive law of the phases, (ii) the laminarization of the flow and drag reduction in viscoelastic flows (reduction in pressure). The fourth area is the exploration of novel features of homogenization for some nonlinear problems with nonstandard boundary conditions arising in modeling of superconductors and liquid crystals. The main objective is to characterize the dependence of the homogenization limit on the domain size and to explore the ramification of this size effect in physical problems.Composite materials are of critical technological importance. The modeling and design of these materials raises fundamental questions of physics, materials science, and mathematics. Many of these questions are not yet answered, and mathematics has much to contribute. This project will advance our understanding of composite materials through a theoretical effort of the principal investigator, his collaborators and advisees coordinated with experimental studies by materials scientists. The long-term goal is to enhance the contribution from mathematics to very contemporary technological problems. This will be done with an emphasis on fostering interdisciplinary connections across neighboring disciplines, as well as between academia, laboratories and industries. The results of this research will be used in developing new materials with superior properties for various industrial needs. The main applications include the design of thermal protection packages for electronic industries, which will address the need for further miniaturization of modern electronic devices (e.g., cell phones); the use of fluids with polymer and micellar additives for cooling of various devices (e.g., reactors) and more efficient transport of oil; and the optimization of transport properties of polydispersed suspensions.
提案编号0204637PI: Leonid berlyand机构:宾夕法尼亚州立大学标题:具有周期性和随机微结构的多尺度非均匀材料建模摘要本提案的科学核心围绕四个领域展开。均质化是所有四个领域的共同主题,预计拟议的工作将导致新的均质化技术和工具的发展。第一个领域涉及高填充高对比度复合材料的离散网络近似。主要目的是表征复合材料的有效输运性质对填充粒子的形状和随机位置的依赖在一个严格的数学框架与控制误差估计。我们在第二个领域的目标是获得复合材料有效性能的解析公式。这些公式揭示了有效性质对几何和物理参数的显式依赖,并提供了有价值的物理见解,可用于测试为一般情况开发的数值算法。将从第一个和第二个领域的不同角度讨论多分散性的重要实际问题,并对结果进行比较。第三个领域涉及复杂流体的流变性,如聚合物复合材料、悬浮液和胶束流体。这里的主要特征是:(i)胶束管或胶束球之间的相互作用,与相的本构律相比,它导致有效本构方程的剧烈变化;(ii)粘弹性流动的流层化和阻力减少(压力减少)。第四个领域是探索超导体和液晶建模中出现的一些具有非标准边界条件的非线性问题的均匀化新特征。主要目的是表征均匀化极限对畴尺寸的依赖,并探索这种尺寸效应在物理问题中的分支。复合材料具有重要的技术意义。这些材料的建模和设计提出了物理学、材料科学和数学的基本问题。这些问题中有许多还没有答案,数学对此有很大的贡献。该项目将通过首席研究员、他的合作者和顾问的理论努力,以及材料科学家的实验研究,促进我们对复合材料的理解。长期目标是提高数学对当代技术问题的贡献。这样做的重点将是促进邻近学科之间以及学术界、实验室和工业界之间的跨学科联系。这项研究的结果将用于开发具有优异性能的新材料,以满足各种工业需求。主要应用包括电子工业的热保护封装设计,这将解决现代电子设备(例如,手机)进一步小型化的需要;使用含有聚合物和胶束添加剂的流体冷却各种设备(例如反应器),并更有效地输送石油;以及多分散悬浮液输运性能的优化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Berlyand其他文献
Focusing of active particles in a converging flow
汇聚流中活性粒子的聚焦
- DOI:
10.1088/1367-2630/aa94fd - 发表时间:
2017 - 期刊:
- 影响因子:3.3
- 作者:
Mykhailo Potomkin;Andreas Kaiser;Leonid Berlyand;Igor S. Aranson - 通讯作者:
Igor S. Aranson
On an evolution equation in a cell motility model
- DOI:
10.1016/j.physd.2015.10.008 - 发表时间:
2016 - 期刊:
- 影响因子:
- 作者:
Matthew S. Mizuhara;Leonid Berlyand;Volodymyr Rybalko;Lei Zhang - 通讯作者:
Lei Zhang
A two scale $$\Gamma $$ -convergence approach for random non-convex homogenization
随机非凸均匀化的双尺度 Γ 收敛方法
- DOI:
10.1007/s00526-017-1249-y - 发表时间:
2017-10-06 - 期刊:
- 影响因子:2.000
- 作者:
Leonid Berlyand;Etienne Sandier;Sylvia Serfaty - 通讯作者:
Sylvia Serfaty
Non-Gaussian Limiting Behavior of the Percolation Threshold in a Large System
- DOI:
10.1007/s002200050082 - 发表时间:
1997-04-01 - 期刊:
- 影响因子:2.600
- 作者:
Leonid Berlyand;Jan Wehr - 通讯作者:
Jan Wehr
Leonid Berlyand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Berlyand', 18)}}的其他基金
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
- 批准号:
2401227 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Stability and Bifurcations in Free-Boundary Models of Active Gels
活性凝胶自由边界模型的稳定性和分岔
- 批准号:
2005262 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Control of Flagellated Bacteria Motion in Anisotropic Fluids
各向异性流体中带鞭毛细菌运动的控制
- 批准号:
1707900 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
DMREF: Collaborative Research: Design of active ink for 3D printing: integrating modeling and experiments
DMREF:协作研究:3D 打印活性墨水设计:建模与实验相结合
- 批准号:
1628411 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Ginzburg-Landau type problems in superconductivity and cell motility
超导和细胞运动中的金兹堡-朗道型问题
- 批准号:
1405769 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
PDEs and Dynamical Systems in Biology
生物学中的偏微分方程和动力系统
- 批准号:
1311726 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Two-Parameter Homogenization Problems in Superconductivity and Related Problems
超导中的二参数均匀化问题及相关问题
- 批准号:
1106666 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Homogenization of Ginzburg-Landau and Elasticity Problems and Related Questions
Ginzburg-Landau 的均质化和弹性问题及相关问题
- 批准号:
0708324 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Homogenization and Materials Science
会议:均质化与材料科学
- 批准号:
0072259 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
- 批准号:
AH/Z000084/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
- 批准号:
MR/Y020200/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
- 批准号:
EP/X029093/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Mechanistic Multiscale Modelling Of Drug Release from Immediate Release Tablets
速释片剂药物释放的机制多尺度建模
- 批准号:
EP/X032019/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
- 批准号:
2340882 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Multiscale Bacterial Transport in Porous Media
职业:多孔介质中的多尺度细菌传输
- 批准号:
2340501 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
- 批准号:
2340918 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构化网格技术
- 批准号:
2348394 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




