DMREF: Doping and Defects in Diamond for Electronics

DMREF:电子产品金刚石的掺杂和缺陷

基本信息

  • 批准号:
    1628958
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

Diamond's electronic properties are superior compared to currently used wide bandgap semiconductor materials. For electronic applications, diamond's high electron and hole mobility values enable high speed and high current operation, its low dielectric constant contributes to high frequency operation, its wide bandgap supports a high breakdown electric field and its high thermal conductivity supports high current operation. Diamond-based power and high frequency electronics will operate at power regimes not allowed by current semiconductor electronic devices. The impact is that the exceptional semiconductor properties of diamond will enable a new and more energy efficient class of higher-power, higher-voltage, and higher temperature electronic devices and will transform applications in transportation, manufacturing and energy sectors. To realize the potential of diamond for electronic diodes and transistors it is crucial that the electric field breakdown strength be large and that desired p-type and n-type doping profiles be achieved. The formation of doping profiles with desired variation in both the lateral and vertical directions are key to forming semiconductor junctions and controlling the electric field and breakdown voltages in diode and transistor devices. The goal of this project is to advance the scientific and engineering knowledge needed to form desired doping profiles for diamond electronic devices and to reduce the defects in diamond such that the full high voltage potential of diamond devices is achieved. An additional goal is to train graduate students and summer undergraduate student interns in diamond technology.The formation of doping profiles in diamond material with desired variation in both the lateral and vertical directions are key to forming semiconductor junctions and controlling the electric field and breakdown voltages in diamond diode and transistor devices. The first objective of this project is develop the processes, know-how and understanding of forming controlled doping profiles in diamond for electronics by using ion implantation coupled with annealing. Diamond annealing will be studied at (1) high pressure and high temperature conditions and (2) metastable conditions of low pressure and high temperature with the surface of the diamond covered with hydrogen to prevent/slow the conversion of diamond to graphite. The second objective of this project is to develop processes, know-how and understanding to reduce point and dislocation defects in the diamond yielding electronic devices with higher breakdown voltages and lower leakage currents. The third objective is to develop the computation tools and diamond material properties understanding to predict doping profiles, to predict annealing process results for dopant activation, and to predict diamond electronic device characteristics.
与目前使用的宽禁带半导体材料相比,钻石的电子性能更优越。对于电子应用,钻石的高电子迁移率和空穴迁移率值可实现高速和大电流操作,其低介电常数有助于高频操作,其宽禁带支持高击穿电场,其高热导率支持大电流操作。基于钻石的电力和高频电子设备将在当前半导体电子设备不允许的功率范围内运行。其影响是,钻石的非凡半导体特性将使一种新的、更节能的更高功率、更高电压和更高温度的电子设备成为可能,并将改变交通、制造和能源部门的应用。要实现金刚石作为电子二极管和晶体管的潜力,关键是要有较大的电场击穿强度,并获得所需的p型和n型掺杂分布。在二极管和晶体管器件中,形成在横向和垂直方向上都具有期望变化的掺杂分布是形成半导体结和控制电场和击穿电压的关键。该项目的目标是促进所需的科学和工程知识,以形成所需的钻石电子器件的掺杂分布,并减少钻石中的缺陷,从而实现钻石器件的全部高压电势。另一个目标是对研究生和暑期本科生实习生进行钻石技术培训。在钻石材料中形成在横向和垂直方向上都具有所需变化的掺杂分布是形成半导体结、控制钻石二极管和晶体管器件中的电场和击穿电压的关键。该项目的第一个目标是开发利用离子注入结合退火法在电子产品中形成金刚石受控掺杂剖面的工艺、技术诀窍和理解。为了防止/减缓金刚石向石墨的转化,将在(1)高压高温条件和(2)低压高温亚稳条件下进行金刚石退火,金刚石表面覆盖有氢气。该项目的第二个目标是开发工艺、技术诀窍和理解,以减少具有较高击穿电压和较低泄漏电流的钻石生产电子设备中的点和位错缺陷。第三个目标是开发计算工具和了解金刚石材料的性能,以预测掺杂分布,预测掺杂激活的退火工艺结果,并预测金刚石电子器件的特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Grotjohn其他文献

Timothy Grotjohn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Grotjohn', 18)}}的其他基金

Computer-Integrated Ion, Free Radical and UV Light Sources for Micromanufacturing Workcell
用于微制造工作单元的计算机集成离子、自由基和紫外光源
  • 批准号:
    0500372
  • 财政年份:
    2005
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NSF/DOE Partnership in Basic Plasma Science and Engineering: Scaling of Microwave Plasma Sources to Small Dimensions
NSF/DOE 基础等离子体科学与工程合作:微波等离子体源缩小尺寸
  • 批准号:
    0078480
  • 财政年份:
    2000
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
NSF/DoE Partnership in Basic Plasma Science and Engineering:Microwave Discharge Heating and Stability for Plasma-Assisted Processing Sources
NSF/DoE 在基础等离子体科学与工程领域的合作:等离子体辅助处理源的微波放电加热和稳定性
  • 批准号:
    9713298
  • 财政年份:
    1997
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Modeling and Characterization of an ECR Plasma Reactor for Semiconductor Processing Applications
用于半导体加工应用的 ECR 等离子体反应器的建模和表征
  • 批准号:
    9110313
  • 财政年份:
    1991
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似海外基金

Developing a deeper understanding of doping and defects in metal oxide semiconductors
加深对金属氧化物半导体掺杂和缺陷的了解
  • 批准号:
    2825196
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Studentship
Defects and Doping in Metal-Organic Frameworks
金属有机框架中的缺陷和掺杂
  • 批准号:
    1956403
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: Understanding and harnessing structural defects, doping, passivation, and alloying to increase Voc and efficiency of CdTe solar cells
合作研究:了解和利用结构缺陷、掺杂、钝化和合金化来提高 CdTe 太阳能电池的 Voc 和效率
  • 批准号:
    1711716
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Understanding and harnessing structural defects, doping, passivation, and alloying to increase Voc and efficiency of CdTe solar cells
合作研究:了解和利用结构缺陷、掺杂、钝化和合金化来提高 CdTe 太阳能电池的 Voc 和效率
  • 批准号:
    1711885
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Chemical defects of gallium oxide at low oxygen partial pressure and doping for sol-gel thin films
低氧分压下氧化镓的化学缺陷及溶胶-凝胶薄膜的掺杂
  • 批准号:
    17K06791
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
UNS:Adsorbed water on Transition metal oxide: Doping, Defects and Electrochemistry
UNS:过渡金属氧化物上的吸附水:掺杂、缺陷和电化学
  • 批准号:
    1511733
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Native Point Defects and Doping of Heterovalent Ternary Wide Band Gap Semiconductors
异价三元宽带隙半导体的本征点缺陷与掺杂
  • 批准号:
    1104595
  • 财政年份:
    2011
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Study on the suppression mechanism of crystal defects by the doping of the impurities in the melt during the crystal growth
晶体生长过程中熔体中杂质的掺杂抑制晶体缺陷的机理研究
  • 批准号:
    20550173
  • 财政年份:
    2008
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient P-Type Doping and the Role of Defects in Limiting Acceptor Activation in III-Nitrides
高效 P 型掺杂以及缺陷在限制 III 族氮化物受主激活中的作用
  • 批准号:
    0618948
  • 财政年份:
    2006
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
The investigation of the effects of catalyst doping, element substitution and defects design in carbon materials for hydrogen storage
催化剂掺杂、元素替代和缺陷设计对储氢碳材料的影响研究
  • 批准号:
    LX0453507
  • 财政年份:
    2004
  • 资助金额:
    $ 100万
  • 项目类别:
    Linkage - International
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了