I-Corps: Algorithm-Hardware Co-Design for Large-Scale Machine Learning

I-Corps:大规模机器学习的算法硬件协同设计

基本信息

  • 批准号:
    2137080
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-15 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is the reduction of the economic and technical barriers preventing the adoption of current and future advancements in machine learning technologies. Advances in artificial intelligence (AI) have pushed machine learning models to be computationally larger and larger. Relatively few organizations currently have access to the most sophisticated models due to the necessary computational and memory requirements required to train and deploy such models. This lack of access results in high costs for researchers and businesses attempting to apply AI in applications such as robotics, natural language processing, drug discovery, and computer vision. The technology developed here reduces the size of the models and optimizes hardware so that large-scale models can be used on existing systems. Improved access to state-of-the-art models will accelerate adoption of AI in the economy and potentially drive more rapid improvements in cutting edge AI-based discoveries.This I-Corps project develops a combination of several innovations in the field of machine learning acceleration. The innovation is aimed at simultaneous optimization at the hardware and software levels. By targeting both levels simultaneously, the technology enables speeds which are not possible by combining existing technologies individually. The core technology combines model compression techniques, custom kernels and hardware utilization designs for acceleration, and cloud orchestration algorithms. Prior results have shown capabilities to significantly reduce model sizes and speed inference results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目的更广泛的影响/商业潜力是减少了阻止采用机器学习技术当前和未来进步的经济和技术障碍。 人工智能(AI)的进步推动机器学习模型在计算上变得越来越大。 由于训练和部署这些模型所需的必要计算和内存要求,目前相对较少的组织可以访问最复杂的模型。这种缺乏访问权限的情况导致研究人员和企业试图将人工智能应用于机器人、自然语言处理、药物发现和计算机视觉等应用中的成本高昂。这里开发的技术减小了模型的大小并优化了硬件,以便可以在现有系统上使用大规模模型。 改进对最先进模型的访问将加速人工智能在经济中的采用,并可能推动基于人工智能的前沿发现的更快改进。这个I-Corps项目开发了机器学习加速领域的几项创新组合。这项创新旨在同时优化硬件和软件级别。通过同时针对这两个级别,该技术可以实现单独结合现有技术无法实现的速度。 其核心技术结合了模型压缩技术、自定义内核和硬件利用率加速设计以及云编排算法。先前的研究结果表明,该奖项能够显著减小模型尺寸并加快推理结果的速度。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gu-Yeon Wei其他文献

A 7.5 GS/s flash ADC and a 10.24 GS/s time-interleaved ADC for backplane receivers in 65 nm CMOS
  • DOI:
    10.1007/s10470-015-0624-x
  • 发表时间:
    2015-08-30
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Hayun Chung;Zeynep Toprak Deniz;Alexander Rylyakov;John Bulzacchelli;Daniel Friedman;Gu-Yeon Wei
  • 通讯作者:
    Gu-Yeon Wei
A view of the sustainable computing landscape
  • DOI:
    10.1016/j.patter.2025.101296
  • 发表时间:
    2025-07-11
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Benjamin C. Lee;David Brooks;Arthur van Benthem;Mariam Elgamal;Udit Gupta;Gage Hills;Vincent Liu;Linh Thi Xuan Phan;Benjamin Pierce;Christopher Stewart;Emma Strubell;Gu-Yeon Wei;Adam Wierman;Yuan Yao;Minlan Yu
  • 通讯作者:
    Minlan Yu

Gu-Yeon Wei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gu-Yeon Wei', 18)}}的其他基金

S&AS: INT: RoboBees 2.0 Towards Autonomous Micro Air Vehicles
S
  • 批准号:
    1724197
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
InTrans: A virtualized SoC platform architecture for mini autonomous drones
InTrans:适用于小型自主无人机的虚拟化 SoC 平台架构
  • 批准号:
    1551044
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Flexible Voltage Stacking for Chip Multiprocessors
芯片多处理器的灵活电压堆叠
  • 批准号:
    0903437
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
ITR: Collaborative Research: A Multi-Level Approach to Power-Efficient Opto-Electronic Interconnection Networks
ITR:协作研究:高效光电互连网络的多层次方法
  • 批准号:
    0325228
  • 财政年份:
    2003
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
  • 批准号:
    2332534
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
  • 批准号:
    2340273
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247893
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
协作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
  • 批准号:
    2403723
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
合作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
  • 批准号:
    2312366
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247891
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
NSF Workshop on Algorithm-Hardware Co-design for Medical Applications
NSF 医疗应用算法硬件协同设计研讨会
  • 批准号:
    2337454
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SHF: Medium: Cross-Stack Algorithm-Hardware-Systems Optimization Towards Ubiquitous On-Device 3D Intelligence
SHF:中:跨堆栈算法-硬件-系统优化,实现无处不在的设备上 3D 智能
  • 批准号:
    2312758
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CAREER: SHF: Chimp: Algorithm-Hardware-Automation Co-Design Exploration of Real-Time Energy-Efficient Motion Planning
职业:SHF:黑猩猩:实时节能运动规划的算法-硬件-自动化协同设计探索
  • 批准号:
    2239945
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247892
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了