A Least-Squares Fit of an Ocean Model to Deglacial Radiocarbon Records
海洋模型与冰下放射性碳记录的最小二乘拟合
基本信息
- 批准号:1702417
- 负责人:
- 金额:$ 49.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The deep ocean is renewed, or "ventilated", when surface waters present at high latitudes become sufficiently cold and very dense. These waters subsequently spread laterally, filling the various deep oceanic basins, and eventually return to the sea surface. Ventilation is therefore the very process by which the deep ocean communicates with our atmosphere and as such, is thought to play a particularly important role in the climate system. This project will estimate the changes in deep ocean ventilation which took place during the last deglaciation -- the largest manifestation of natural climate change that remains relatively well preserved in the geologic record. It will (i) promote the progress of science by elucidating the contribution of ocean ventilation changes to the deglacial rise in atmospheric concentration of carbon dioxide (CO2) observed in ice cores, (ii) be profitable to the broader scientific community by making freely available the computer codes developed for this project, (iii) support education by engaging three students and by drafting a little pocket book on the methods used for this project and aimed particularly at undergraduate and graduate students, and (iv) benefit society by furthering understanding of the ocean's role in the natural changes of atmospheric CO2 -- the most important greenhouse gas in our atmosphere after water vapor and the subject of major current environmental and societal concerns.In more technical terms, the history of the ventilation of deep oceanic basins over the past 20,000 yr will be estimated from the quantitative combination of ocean radiocarbon (14C) records with an ocean circulation model using recursive least-squares techniques (a Kalman filter and a related smoother). The challenge posed by the application of these powerful but computationally intensive techniques over geologic time scales will be addressed by using a coarse-resolution model with simplified dynamics in concert with efficient filtering and smoothing algorithms. The hypothesis that ocean ventilation changes contributed to the changes in atmospheric CO2 concentration of the last deglaciation will be tested with due regard for the uncertainties and sparse distribution of the radiocarbon records. The work plan of this research will comprise four tasks. (1) An ocean circulation model of intermediate complexity, based on coarse resolution and planetary geostrophy, will be applied. It will have a grid that accommodates the spatial distribution of 14C records and include a simplified sea-ice model and transport equation for 14C. (2) Modern and paleo-data, including more than 1000 14C age estimates from benthic foraminifera and deep-sea corals, will be assembled together with uncertainty estimates. (3) A Kalman filter will be used to combine the model with the data during a forward integration of the model from the Last Glacial Maximum (LGM) to today. (4) A smoother will be used to propagate backwards in time the information provided by the data (including modern data) and hence further constrain past ocean states. From (3-4), an estimate of basin-scale ocean ventilation rates from LGM to today will be derived, one that is consistent with the data and the model, given estimates of their respective error statistics.
当高纬度地区的表层沃茨变得足够冷和密度很大时,深海就被更新或“通风”。这些沃茨随后横向扩散,充满各个深海盆地,并最终返回海面。因此,通风是深海与大气层沟通的过程,因此被认为在气候系统中发挥着特别重要的作用。该项目将估计最后一次冰川消退期间发生的深海通风变化----这是自然气候变化的最大表现形式,在地质记录中保存相对完好。它将(一)通过阐明海洋通风变化对冰消期在冰芯中观测到的大气二氧化碳浓度上升的作用,促进科学进步,(二)通过免费提供为该项目开发的计算机代码,使更广泛的科学界受益,(iii)支持教育,让三名学生参与,并起草一本关于该项目所用方法的袖珍小册子,特别针对本科生和研究生,以及(iv)通过进一步了解海洋在大气二氧化碳自然变化中的作用来造福社会--二氧化碳是大气中仅次于水蒸气的最重要的温室气体,也是当前环境和社会关注的主要问题。将利用递归最小二乘法(卡尔曼滤波器和相关的平滑器)将海洋放射性碳(14 C)记录与海洋环流模型定量结合,估计过去20 000年深海盆地的通风历史。这些强大的,但计算密集型的技术在地质时间尺度上的应用所带来的挑战,将通过使用一个粗略的分辨率模型与简化的动态与高效的滤波和平滑算法相结合来解决。假设海洋通风的变化有助于在大气中的CO2浓度的变化的最后一次冰消期将进行测试,适当考虑的不确定性和稀疏分布的放射性碳记录。这项研究的工作计划将包括四项任务。(1)将应用基于粗分辨率和行星地转的中等复杂性海洋环流模型。它将有一个网格,容纳14 C记录的空间分布,并包括一个简化的海冰模型和14 C的传输方程。(2)现代和古数据,包括来自底栖有孔虫和深海珊瑚的1000多个14 C年龄估计,将与不确定性估计一起收集。(3)在对从末次盛冰期(LGM)到今天的模型进行前向积分期间,将使用卡尔曼滤波器将模型与数据联合收割机结合起来。(4)将使用平滑器将数据(包括现代数据)提供的信息及时向后传播,从而进一步限制过去的海洋状态。从(3-4),估计从末次盛冰期到今天的流域尺度的海洋通风率将被导出,一个与数据和模型相一致的,给出了各自的误差统计估计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olivier Marchal其他文献
Contribution of <sup>230</sup>Th measurements to the estimation of the abyssal circulation
- DOI:
10.1016/j.dsr.2007.01.002 - 发表时间:
2007-04-01 - 期刊:
- 影响因子:
- 作者:
Olivier Marchal;Roger François;Jan Scholten - 通讯作者:
Jan Scholten
Hamiltonian Representation of Isomonodromic Deformations of Twisted Rational Connections: The Painlevé 1 Hierarchy
- DOI:
10.1007/s00220-024-05187-0 - 发表时间:
2024-12-10 - 期刊:
- 影响因子:2.600
- 作者:
Olivier Marchal;Mohamad Alameddine - 通讯作者:
Mohamad Alameddine
Топологическое разложение модели $\beta$-ансамбля и квантовая алгебраическая геометрия в рамках секторного подхода@@@Topological expansion of the $\beta$-ensemble model and quantum algebraic geometry in the sectorwise approach
Топологическое разложение модели $eta$-ансамбля и квантовая алгебраическая геометрия в $eta$-系综模型的拓扑展开和扇区方法中的量子代数几何
- DOI:
10.4213/tmf6603 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Леонид Олегович Чехов;L. Chekhov;Б Эйнард;Bertrand Eynard;О Маршал;Olivier Marchal - 通讯作者:
Olivier Marchal
Hearing the shape of an arena with spectral swarm robotics
使用光谱群机器人聆听竞技场的形状
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
L. Cazenille;Nicolas Lobato;Alessia Loi;Mika Ito;Olivier Marchal;N. Aubert;Nicolas Bredèche;A. Genot - 通讯作者:
A. Genot
An inverse modelling approach to constrain sup7/supBe cycling in the subpolar North Atlantic
一种限制亚北极北大西洋中 sup7/supBe 循环的反演建模方法
- DOI:
10.1016/j.dsr.2025.104465 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:2.100
- 作者:
Paul Lerner;Mélanie Grenier;Olivier Marchal;Pieter van Beek - 通讯作者:
Pieter van Beek
Olivier Marchal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olivier Marchal', 18)}}的其他基金
Evolution of Glacial Meltwater in the North Atlantic Current - Subpolar Front System
北大西洋洋流-副极锋系统中冰川融水的演化
- 批准号:
2202771 - 财政年份:2022
- 资助金额:
$ 49.3万 - 项目类别:
Standard Grant
Deep-sea sediment redistribution induced by a meandering Gulf Stream
蜿蜒的墨西哥湾流引起的深海沉积物重新分布
- 批准号:
1949536 - 财政年份:2020
- 资助金额:
$ 49.3万 - 项目类别:
Standard Grant
Offshore Export of Glacial Water and Ice in an Eddying Ocean
涡流海洋中冰川水和冰的近海输出
- 批准号:
1903427 - 财政年份:2019
- 资助金额:
$ 49.3万 - 项目类别:
Standard Grant
Collaborative Proposal: Estimation of particle aggregation and disaggregation rates from the inversion of chemical tracer data
合作提案:通过化学示踪数据反演估计颗粒聚集和解聚率
- 批准号:
1829790 - 财政年份:2018
- 资助金额:
$ 49.3万 - 项目类别:
Standard Grant
Pa-231 and Th-230 in the Western North Atlantic: Disentangling the Effects of Boundary Scavenging and Ocean Circulation
北大西洋西部的 Pa-231 和 Th-230:解开边界清除和海洋环流的影响
- 批准号:
1556400 - 财政年份:2016
- 资助金额:
$ 49.3万 - 项目类别:
Standard Grant
Application of Transient Time Distributions to Ocean Radiocarbon Records for the Last Deglaciation
瞬态时间分布在末次冰消期海洋放射性碳记录中的应用
- 批准号:
1301907 - 财政年份:2013
- 资助金额:
$ 49.3万 - 项目类别:
Standard Grant
Selecting and Applying an Inverse Method to Infer Particle Dynamics from GEOTRACES Data
选择并应用反演方法从 GEOTRACES 数据推断粒子动力学
- 批准号:
1232578 - 财政年份:2012
- 资助金额:
$ 49.3万 - 项目类别:
Standard Grant
Kalman Filtering and Smoothing of Sediment Records from the Atlantic Ocean over the last 20 KYRS
过去 20 KYRS 大西洋沉积物记录的卡尔曼过滤和平滑
- 批准号:
1103395 - 财政年份:2011
- 资助金额:
$ 49.3万 - 项目类别:
Standard Grant
Testing a Role of Vertical Mixing in Abrupt Climate Change
测试垂直混合在气候突变中的作用
- 批准号:
0602230 - 财政年份:2006
- 资助金额:
$ 49.3万 - 项目类别:
Standard Grant
Inverse Modeling of the Glacial Ocean
冰川海洋的反演模拟
- 批准号:
0524927 - 财政年份:2005
- 资助金额:
$ 49.3万 - 项目类别:
Continuing Grant
相似海外基金
Counting number fields with finite Abelian Galois group of bounded conductor that can be described as the sum of two squares.
使用有界导体的有限阿贝尔伽罗瓦群来计算数域,可以将其描述为两个平方和。
- 批准号:
2889914 - 财政年份:2023
- 资助金额:
$ 49.3万 - 项目类别:
Studentship
CAREER: Statistics through the Sum of Squares Lens
职业:通过平方和透镜进行统计
- 批准号:
2238080 - 财政年份:2023
- 资助金额:
$ 49.3万 - 项目类别:
Continuing Grant
Adaptation of Dynamic Weighted Ordinary Least Squares Regression in the Presence of Interference Networks
存在干扰网络时动态加权普通最小二乘回归的自适应
- 批准号:
569021-2022 - 财政年份:2022
- 资助金额:
$ 49.3万 - 项目类别:
Postgraduate Scholarships - Doctoral
Latin squares and strongly regular graphs
拉丁方和强正则图
- 批准号:
572186-2022 - 财政年份:2022
- 资助金额:
$ 49.3万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Optimal High-Dimensional Estimators Using Sum-of-Squares Proof Systems
职业:使用平方和证明系统的最优高维估计器
- 批准号:
2143246 - 财政年份:2022
- 资助金额:
$ 49.3万 - 项目类别:
Continuing Grant
Min-max problems related to Steenrod squares
与 Steenrod 平方相关的最小-最大问题
- 批准号:
572642-2022 - 财政年份:2022
- 资助金额:
$ 49.3万 - 项目类别:
University Undergraduate Student Research Awards
Finite Element Methods for Elliptic Least-Squares Problems with Inequality Constraints
具有不等式约束的椭圆最小二乘问题的有限元方法
- 批准号:
2208404 - 财政年份:2022
- 资助金额:
$ 49.3万 - 项目类别:
Standard Grant
A Study of Advanced Least Squares Estimation Methods to Support Spatial Data Infrastructure
支持空间数据基础设施的先进最小二乘估计方法研究
- 批准号:
534146-2019 - 财政年份:2021
- 资助金额:
$ 49.3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Least Squares PGD Mimetic Spectral Element Methods for Systems of First-Order PDEs
一阶偏微分方程组的最小二乘 PGD 模拟谱元方法
- 批准号:
2316393 - 财政年份:2021
- 资助金额:
$ 49.3万 - 项目类别:
Studentship
A divide and conquer attack on challenging least squares problems
针对具有挑战性的最小二乘问题的分而治之攻击
- 批准号:
EP/W009676/1 - 财政年份:2021
- 资助金额:
$ 49.3万 - 项目类别:
Research Grant