Models of Controlled Biological Growth
受控生物生长模型
基本信息
- 批准号:1714237
- 负责人:
- 金额:$ 34.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the process of their growth, tissues in plants and animals develop into distinctly recognizable shapes: leaves, flowers, bones, etc.; almost universally, the tissue growth appears to be controlled with remarkable accuracy. The principal aim of this research is developing new mathematical tools to understand this control mechanism. From this theoretical perspective, some key questions will be addressed: What physical parameters produce the different behavior of a climbing vine, compared with a tree stem? How does nature control the shape and size of leaves, or flowers, in plants of different species? The project will study various partial differential equations (PDE) modeling the growth of a biological tissue. These equations describe the balance between diffusion and adsorption of growth-inducing chemicals, volume expansion, and elastic deformation of the tissue. The focus will be on the emergence of distinctive shapes, and on how these shapes can be modified by varying the growth-affecting physical parameters. The project will focus on various models of tissue growth, described by systems of partial differential equations. These represent diffusion and absorption for morphogens within the tissue, bulk growth, and elastic deformation. Existence, uniqueness, and qualitative properties of solutions will be studied, also in an anisotropic setting and for stratified domains. The results to be obtained will expand the current theory of evolution problems on domains with moving boundaries. The research will also address new types of stationary problems, somewhat like eigenvalue problems but in a set-valued framework. For various classes of stratified domains, the Principal Investigator expects to discover families of locally invariant "morpho-stationary" configurations, depending on finitely many parameters. These will generate a rich variety of new geometric shapes, that will be studied both analytically and numerically.
在生长过程中,植物和动物的组织发育成明显可识别的形状:叶、花、骨头等;几乎普遍地,组织生长似乎受到非常精确的控制。 这项研究的主要目的是开发新的数学工具来理解这种控制机制。 从这个理论角度来看,一些关键问题将得到解决:与树干相比,哪些物理参数会产生攀爬藤蔓的不同行为? 大自然如何控制不同物种植物的叶子或花朵的形状和大小? 该项目将研究模拟生物组织生长的各种偏微分方程(PDE)。 这些方程描述了生长诱导化学物质的扩散和吸附、体积膨胀和组织的弹性变形之间的平衡。 重点将放在独特形状的出现,以及如何通过改变影响生长的物理参数来修改这些形状。 该项目将重点研究由偏微分方程组描述的各种组织生长模型。这些代表组织内形态发生素的扩散和吸收、体积生长和弹性变形。将研究解决方案的存在性、唯一性和定性属性,也在各向异性设置和分层域中进行研究。获得的结果将扩展当前关于具有移动边界的领域的进化问题理论。 该研究还将解决新型平稳问题,有点像特征值问题,但在集值框架中。 对于各种类别的分层域,首席研究员希望根据有限多个参数发现局部不变的“形态平稳”配置族。 这些将产生丰富多样的新几何形状,将对这些形状进行分析和数值研究。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Feedback stabilization of stem growth
茎生长的反馈稳定
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:1.3
- 作者:Ancona, Fabio;Bressan, Alberto;Glass, Olivier;Shen, Wen
- 通讯作者:Shen, Wen
Well-posedness of a model for the growth of tree stems and vines
树干和藤蔓生长模型的适定性
- DOI:10.3934/dcds.2018083
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Bressan, Alberto;Palladino, Michele
- 通讯作者:Palladino, Michele
A 2-dimensional shape optimization problem for tree branches
树枝的二维形状优化问题
- DOI:10.3934/nhm.2020031
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Bressan, Alberto;Galtung, Sondre Tesdal
- 通讯作者:Galtung, Sondre Tesdal
Variational problems for tree roots and branches
树根和树枝的变分问题
- DOI:10.1007/s00526-019-1666-1
- 发表时间:2019
- 期刊:
- 影响因子:2.1
- 作者:Bressan, Alberto;Palladino, Michele;Sun, Qing
- 通讯作者:Sun, Qing
Irrigable measures for weighted irrigation plans
加权灌溉计划的灌溉措施
- DOI:10.3934/nhm.2021014
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Sun, Qing
- 通讯作者:Sun, Qing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alberto Bressan其他文献
High order approximation of implicitly defined maps
- DOI:
10.1007/bf01789393 - 发表时间:
1984-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Alberto Bressan - 通讯作者:
Alberto Bressan
Diffusion Approximations of Markovian Solutions to Discontinuous ODEs
- DOI:
10.1007/s10884-023-10250-w - 发表时间:
2023-03-05 - 期刊:
- 影响因子:1.300
- 作者:
Alberto Bressan;Marco Mazzola;Khai T. Nguyen - 通讯作者:
Khai T. Nguyen
Markovian Solutions to Discontinuous ODEs
- DOI:
10.1007/s10884-021-09974-4 - 发表时间:
2021-03-12 - 期刊:
- 影响因子:1.300
- 作者:
Alberto Bressan;Marco Mazzola;Khai T. Nguyen - 通讯作者:
Khai T. Nguyen
Sugli atti di moto piu rigidi possibile
- DOI:
10.1007/bf02844827 - 发表时间:
1983-05-01 - 期刊:
- 影响因子:0.900
- 作者:
Alberto Bressan - 通讯作者:
Alberto Bressan
Self-consistent Feedback Stackelberg Equilibria for Infinite Horizon Stochastic Games
- DOI:
10.1007/s13235-019-00329-9 - 发表时间:
2019-09-30 - 期刊:
- 影响因子:1.600
- 作者:
Alberto Bressan;Yilun Jiang - 通讯作者:
Yilun Jiang
Alberto Bressan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alberto Bressan', 18)}}的其他基金
Regularity and Approximation of Solutions to Conservation Laws
守恒定律解的正则性和近似性
- 批准号:
2306926 - 财政年份:2023
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Singularities and Error Bounds for Hyperbolic Equations
双曲方程的奇点和误差界
- 批准号:
2006884 - 财政年份:2020
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Hyperbolic Conservation Laws and Applications
双曲守恒定律及其应用
- 批准号:
1411786 - 财政年份:2014
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Hyperbolic Systems of Conservation Laws
守恒定律的双曲系统
- 批准号:
0505430 - 财政年份:2005
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318831 - 财政年份:2023
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Randomized placebo controlled trial to determine the biological signature of cannabidiol as a treatment for social anxiety disorder
随机安慰剂对照试验,以确定大麻二酚治疗社交焦虑症的生物特征
- 批准号:
10706609 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Controlled synthesis of two-dimensional polymers within biological membranes
生物膜内二维聚合物的受控合成
- 批准号:
21K14670 - 财政年份:2021
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Controlled Environment Facilities for the Marine Biological Laboratory
海洋生物实验室受控环境设施
- 批准号:
2128820 - 财政年份:2021
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Glycopolymer nanomedicine based on the controlled polymerization and the operation of biological functionality
基于可控聚合和生物功能运作的糖聚合物纳米药物
- 批准号:
19H02766 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Combined Mass Spectrometric and Optical Spectroscopic Investigation of Biological Molecules in Controlled Micro-environments
受控微环境中生物分子的质谱和光学光谱联合研究
- 批准号:
RGPIN-2015-04599 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Grants Program - Individual
Combined Mass Spectrometric and Optical Spectroscopic Investigation of Biological Molecules in Controlled Micro-environments
受控微环境中生物分子的质谱和光学光谱联合研究
- 批准号:
RGPIN-2015-04599 - 财政年份:2018
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Grants Program - Individual
Combined Mass Spectrometric and Optical Spectroscopic Investigation of Biological Molecules in Controlled Micro-environments
受控微环境中生物分子的质谱和光学光谱联合研究
- 批准号:
RGPIN-2015-04599 - 财政年份:2017
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Grants Program - Individual