Conference on Hyperbolic Problems

双曲问题会议

基本信息

  • 批准号:
    1764156
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

This award provides support for graduate students and junior researchers to attend the "XVII International Conference on Hyperbolic Problems: Theory, Numerics, and Applications" (HYP2018) held at the Pennsylvania State University, University Park on June 25-29, 2018. The conference highlights recent advances in the fundamental theory of hyperbolic partial differential equations, as well as related mathematical models that have experienced sustained activity and exciting recent progress. Hyperbolic problems are ubiquitous in modern science and engineering, ranging from the mathematical theory of fluids, to collective motion of animals (such as flocks of birds), to traffic and pedestrian flow. The meeting is expected to have considerable impact on future developments of applied mathematics in academia, industry, and national Labs in the United States. The conference website can be found at http://www.hyp2018.psu.edu/ One of the conference's objectives is to bring together researchers, students, and practitioners with interest in the theoretical, computational, and applied aspects of differential equations of hyperbolic type. HYP2018 is the seventeenth meeting in a biennial series with varying venues, whose last United States meeting (the twelfth) was held in 2008. The conference series is unique in its emphasis on encouraging interdisciplinary collaborations that involve sophisticated mathematics applied to challenging problems of great contemporary interest. Among the topics highlighted at the conference are: the mathematical theory of fluids, with new engineering, medical, and biological applications; hyperbolic equations on networks, with a variety of applications, most notably to traffic flow on a network of roads; kinetic and fluid models for collective dynamics of many-body systems; transport equations, with particular focus on optimality and mixing; the equations of general relativity; and control problems for hyperbolic partial differential equations and differential games. The list of plenary and invited speakers includes leading world experts in these scientific areas. Special panel sessions will be devoted to framing open problems to attract the attention of junior scientists in the audience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为研究生和初级研究人员提供支持,参加2018年6月25日至29日在宾夕法尼亚州立大学大学公园举行的“第十七届双曲问题国际会议:理论,数值和应用”(HYP 2018)。会议重点介绍了双曲型偏微分方程基础理论的最新进展,以及经历了持续活动和令人兴奋的最新进展的相关数学模型。双曲线问题在现代科学和工程中无处不在,从流体的数学理论到动物的集体运动(如鸟群),再到交通和行人流量。预计这次会议将对美国学术界、工业界和国家实验室应用数学的未来发展产生相当大的影响。该会议的网站可以在http://www.hyp2018.psu.edu/找到会议的目标之一是汇集研究人员,学生和从业者对双曲型微分方程的理论,计算和应用方面感兴趣。HYP 2018是两年一次的系列会议中的第十七次会议,其最后一次美国会议(第十二次)于2008年举行。该系列会议的独特之处在于它强调鼓励跨学科的合作,涉及复杂的数学应用于具有挑战性的问题,当代极大的兴趣。在会议上突出的主题是:流体的数学理论,与新的工程,医学和生物学应用;双曲方程的网络,与各种应用,最显着的交通流量的道路网络;动力学和流体模型的集体动力学的多体系统;运输方程,特别注重最优性和混合;方程的广义相对论;双曲型偏微分方程和微分对策的控制问题。全体会议和特邀发言者名单包括这些科学领域的世界领先专家。特别小组会议将致力于构建开放的问题,以吸引观众中的年轻科学家的注意力。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alberto Bressan其他文献

High order approximation of implicitly defined maps
Diffusion Approximations of Markovian Solutions to Discontinuous ODEs
Markovian Solutions to Discontinuous ODEs
Sugli atti di moto piu rigidi possibile
Self-consistent Feedback Stackelberg Equilibria for Infinite Horizon Stochastic Games
  • DOI:
    10.1007/s13235-019-00329-9
  • 发表时间:
    2019-09-30
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Alberto Bressan;Yilun Jiang
  • 通讯作者:
    Yilun Jiang

Alberto Bressan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alberto Bressan', 18)}}的其他基金

Regularity and Approximation of Solutions to Conservation Laws
守恒定律解的正则性和近似性
  • 批准号:
    2306926
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Singularities and Error Bounds for Hyperbolic Equations
双曲方程的奇点和误差界
  • 批准号:
    2006884
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Models of Controlled Biological Growth
受控生物生长模型
  • 批准号:
    1714237
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Hyperbolic Conservation Laws and Applications
双曲守恒定律及其应用
  • 批准号:
    1411786
  • 财政年份:
    2014
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Problems of Nonlinear Control
非线性控制问题
  • 批准号:
    1108702
  • 财政年份:
    2011
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
New problems in nonlinear control
非线性控制的新问题
  • 批准号:
    0807420
  • 财政年份:
    2008
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Hyperbolic Systems of Conservation Laws
守恒定律的双曲系统
  • 批准号:
    0505430
  • 财政年份:
    2005
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant

相似海外基金

Inverse problems for degenerate hyperbolic partial differential equations on manifolds
流形上简并双曲偏微分方程的反问题
  • 批准号:
    22K20340
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Hyperbolic problems with discontinuous coefficients
具有不连续系数的双曲问题
  • 批准号:
    EP/V005529/2
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Research Grant
Efficient High-Order Methods for Solution of Hyperbolic Problems
求解双曲问题的高效高阶方法
  • 批准号:
    RGPIN-2017-05851
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Hyperbolic problems with discontinuous coefficients
具有不连续系数的双曲问题
  • 批准号:
    EP/V005529/1
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Research Grant
Efficient High-Order Methods for Solution of Hyperbolic Problems
求解双曲问题的高效高阶方法
  • 批准号:
    RGPIN-2017-05851
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Inverse problems for hyperbolic partial differential equations on Lorentzian manifolds
洛伦兹流形上双曲偏微分方程的反问题
  • 批准号:
    20J11497
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Hyperbolic Inverse Problems
双曲反问题
  • 批准号:
    1908391
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Theory and Solution Methods for Generalized Nash Equilibrium Problems Governed by Networks of Nonlinear Hyperbolic Conservation Laws
非线性双曲守恒律网络治理的广义纳什均衡问题的理论与求解方法
  • 批准号:
    423771718
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Priority Programmes
Efficient High-Order Methods for Solution of Hyperbolic Problems
求解双曲问题的高效高阶方法
  • 批准号:
    RGPIN-2017-05851
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
A New Multiscale Framework for Hyperbolic Problems
双曲线问题的新多尺度框架
  • 批准号:
    1913209
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了