Hyperbolic Systems of Conservation Laws
守恒定律的双曲系统
基本信息
- 批准号:0505430
- 负责人:
- 金额:$ 15.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Award Abstract DMS-0505430, Alberto Bressan, Pennsylvania State UniversityTitle: HYPERBOLIC SYSTEMS OF CONSERVATION LAWSABSTRACT:This research addresses fundamental issues in the theory of hyperbolic systems of conservation laws, in one or more space dimensions. The project also includes the analysis of some new physical models of nonlinear wave propagation, and applications to the theory of differential games.For systems of equations in two or three space dimensions, the P.I. will study basic problems concerning the existence and stability of solutions, in suitable functional spaces. A major goal will be the description of singularities determined by the focusing of nonlinear waves in radially symmetric solutions, and the understanding of oscillation effects, arising from transport phenomena with highly irregular velocity fields. The P.I. also plans to develop new mathematical techniques for the analysis of non-linear waves, described by a class of integro-differential equations. The theoretical results will becomplemented by some rigorous studies on the performance of computational algorithms, for solutions containing shock waves.Phenomena related to the propagation of waves can be found nearly everywhere in nature, and are of great importance in science and engineering. Non-linear effects are responsible for changes in the shape of the waves, and allow what is mathematically described as "singularity formation". In practice, this means that waves can break, such as sea waves rolling up along a beach or shock waves forming at the passage of a supersonic airplane. In two or three space dimensions, the singularities canbe even more dramatic because of "focusing" effects, producing a high concentration of energy near a single point. This is exemplified by an optical lens, concentrating sun raysat a single spot. In the numerical computation of solutions,the loss of regularity due to wave breaking is a considerable source of difficulties, because it can greatly reduce the accuracy of computer algorithms.This research project is concerned with mathematical models describing the propagation of nonlinear waves. Its main goal is to understand the formation andthe evolution of singularities, in one or more space dimensions. Particular attention will be given at specific equations of physical significance, such as one describingwaves in a liquid crystal. The research will also address some issues related to numericalcomputation. In particular, the P.I.~will study the effectiveness of discrete approximations, in case of solutions containing shock waves. Moreover, work will begin on the design of algorithms that can automatically recognize the location of shock fronts,with the eventual goal of producing more efficient computational codes.
奖项摘要DMS-0505430,Alberto Bressan,宾夕法尼亚州立大学标题:双曲守恒律系统简介:这项研究解决了守恒律双曲系统理论中的基本问题,在一个或多个空间维度。 该项目还包括一些新的非线性波传播的物理模型的分析,并应用于微分对策理论。将研究有关的存在性和稳定性的解决方案,在适当的功能空间的基本问题。一个主要的目标将是描述的奇异性所确定的非线性波的径向对称的解决方案,并了解振荡的影响,所产生的运输现象与高度不规则的速度场。私家侦探还计划开发新的数学技术,用于分析由一类积分微分方程描述的非线性波。 对于含有激波的解,理论结果将通过对计算算法性能的严格研究来验证。与波的传播有关的现象在自然界中几乎随处可见,在科学和工程中具有重要意义。非线性效应导致波浪形状的变化,并允许数学上描述为“奇点形成”。 在实践中,这意味着波浪可以破碎,例如沿着海滩卷起的海浪或在超音速飞机通过时形成的冲击波。在二维或三维空间中,由于“聚焦”效应,奇点可能会更加引人注目,在单个点附近产生高浓度的能量。这是由一个光学透镜,集中在一个单一的点太阳光线的例子。在数值解的计算中,由于波浪破碎而导致的规则性损失是一个相当大的困难,因为它会大大降低计算机算法的精度。本研究项目涉及描述非线性波浪传播的数学模型。它的主要目标是理解奇点的形成和演化,在一个或多个空间维度。将特别注意具有物理意义的特定方程,例如描述液晶中的波的方程。研究还将解决一些与数值计算相关的问题。特别是P.I.~将研究离散近似的有效性,在包含冲击波的解决方案的情况下。 此外,还将开始设计能够自动识别冲击波阵面位置的算法,最终目标是产生更有效的计算代码。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alberto Bressan其他文献
High order approximation of implicitly defined maps
- DOI:
10.1007/bf01789393 - 发表时间:
1984-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Alberto Bressan - 通讯作者:
Alberto Bressan
Diffusion Approximations of Markovian Solutions to Discontinuous ODEs
- DOI:
10.1007/s10884-023-10250-w - 发表时间:
2023-03-05 - 期刊:
- 影响因子:1.300
- 作者:
Alberto Bressan;Marco Mazzola;Khai T. Nguyen - 通讯作者:
Khai T. Nguyen
Markovian Solutions to Discontinuous ODEs
- DOI:
10.1007/s10884-021-09974-4 - 发表时间:
2021-03-12 - 期刊:
- 影响因子:1.300
- 作者:
Alberto Bressan;Marco Mazzola;Khai T. Nguyen - 通讯作者:
Khai T. Nguyen
Sugli atti di moto piu rigidi possibile
- DOI:
10.1007/bf02844827 - 发表时间:
1983-05-01 - 期刊:
- 影响因子:0.900
- 作者:
Alberto Bressan - 通讯作者:
Alberto Bressan
Self-consistent Feedback Stackelberg Equilibria for Infinite Horizon Stochastic Games
- DOI:
10.1007/s13235-019-00329-9 - 发表时间:
2019-09-30 - 期刊:
- 影响因子:1.600
- 作者:
Alberto Bressan;Yilun Jiang - 通讯作者:
Yilun Jiang
Alberto Bressan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alberto Bressan', 18)}}的其他基金
Regularity and Approximation of Solutions to Conservation Laws
守恒定律解的正则性和近似性
- 批准号:
2306926 - 财政年份:2023
- 资助金额:
$ 15.15万 - 项目类别:
Standard Grant
Singularities and Error Bounds for Hyperbolic Equations
双曲方程的奇点和误差界
- 批准号:
2006884 - 财政年份:2020
- 资助金额:
$ 15.15万 - 项目类别:
Standard Grant
Models of Controlled Biological Growth
受控生物生长模型
- 批准号:
1714237 - 财政年份:2017
- 资助金额:
$ 15.15万 - 项目类别:
Standard Grant
Hyperbolic Conservation Laws and Applications
双曲守恒定律及其应用
- 批准号:
1411786 - 财政年份:2014
- 资助金额:
$ 15.15万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Stability Theory for Systems of Hyperbolic Conservation Laws
双曲守恒定律系统的稳定性理论
- 批准号:
2306852 - 财政年份:2023
- 资助金额:
$ 15.15万 - 项目类别:
Standard Grant
Large solutions for systems of hyperbolic conservation laws and wave equations in one and multiple space dimensions
一维和多维空间双曲守恒定律和波动方程组的大解
- 批准号:
2008504 - 财政年份:2020
- 资助金额:
$ 15.15万 - 项目类别:
Standard Grant
Systems of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程组
- 批准号:
1715012 - 财政年份:2017
- 资助金额:
$ 15.15万 - 项目类别:
Continuing Grant
Structure of solutions to the systems of nonlinear hyperbolic partial differential equations arising in fluid dynamics and conservation laws for phase transition dynamics
流体动力学中出现的非线性双曲偏微分方程组的解的结构和相变动力学守恒定律
- 批准号:
23540250 - 财政年份:2011
- 资助金额:
$ 15.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Entropy solutions for nonlinear degenerate parabolic equations and hyperbolic systems of conservation laws
非线性简并抛物线方程和守恒定律双曲系统的熵解
- 批准号:
22540235 - 财政年份:2010
- 资助金额:
$ 15.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Divergence-measure fields and the structure of solutions of systems of hyperbolic conservation laws
双曲守恒定律系统的散度测度场和解的结构
- 批准号:
0901245 - 财政年份:2009
- 资助金额:
$ 15.15万 - 项目类别:
Standard Grant
Hyperbolic Systems of Conservation Laws and Applications
守恒定律的双曲系统及其应用
- 批准号:
0708137 - 财政年份:2007
- 资助金额:
$ 15.15万 - 项目类别:
Standard Grant
Hyperbolic Systems of Conservation Laws and Applications
守恒定律的双曲系统及其应用
- 批准号:
0803463 - 财政年份:2007
- 资助金额:
$ 15.15万 - 项目类别:
Standard Grant
Numerical methods for systems of nonlinear hyperbolic conservation laws applied to gravity-driven flow problems
应用于重力驱动流动问题的非线性双曲守恒定律系统的数值方法
- 批准号:
249488-2003 - 财政年份:2007
- 资助金额:
$ 15.15万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for systems of nonlinear hyperbolic conservation laws applied to gravity-driven flow problems
应用于重力驱动流动问题的非线性双曲守恒定律系统的数值方法
- 批准号:
249488-2003 - 财政年份:2006
- 资助金额:
$ 15.15万 - 项目类别:
Discovery Grants Program - Individual