Computing Optimal Alignments of Surfaces

计算表面的最佳对齐方式

基本信息

  • 批准号:
    1719582
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Almost everything we see in the world around us is a two-dimensional surface. Whether with our eyes, with radar or with a laser scanner, we receive data about the geometry of the surface that forms the outer boundary of an object. There is a fundamental need to understand how to analyze this geometric data for purposes of aligning and comparing pairs of surfaces. This project will develop and implements new and rigorous mathematical methods to compare shapes, based on techniques of low-dimensional topology. It will develop new mathematical results and create new computational tools. Applications range from facial recognition to brain mapping to protein classification. The underlying mathematical theory of shape comparison will be extended, and new algorithms to implement the resulting theory will be developed and software made available. Moreover this software will be applied and tested on collections of biological shapes, such as protein surfaces, databases of faces, collections of bones and teeth, and brain cortices.This project will develop new mathematical measures of the distortion based on a variety of measures of the energy needed to stretch one surface over another. Given two surfaces, or shapes, algorithms will be developed to produce an optimal correspondence or alignment between them. The difference or similarity of two shapes will be captured in new distance functions that capture aspects of geometric similarity. The project builds on successful existing approaches used in comparing surfaces that have the topology of a sphere. These methods will be improved and extended to more general surfaces, allowing for comparing surfaces with one, two, or more handles. Past methods based on conformal maps will be extended to allow use of more general surface diffeomorphisms. The project will also produce explicit alignments between partial surfaces, or surfaces with boundary. This partial surface matching allows for matching surfaces when only portions of each have been measured, with other parts obscured. It also allows comparison between pairs of surfaces having different topologies, overcoming a problem faced by current methods. The symmetric distortion energy recently introduced will be extended to these more general contexts. Software implementing these geometric algorithms will be developed and made available. This software will be designed to be usable by scientists in a wide variety disciplines and could lead to breakthroughs in biological and medical understanding.
我们周围的世界几乎都是二维的。无论是用眼睛、雷达还是激光扫描仪,我们都能接收到形成物体外边界的表面几何形状的数据。有一个基本的需要,了解如何分析这些几何数据的对齐和比较表面对的目的。这个项目将开发和实施新的和严格的数学方法来比较形状,基于低维拓扑技术。它将发展新的数学成果,创造新的计算工具。应用范围从面部识别到大脑映射到蛋白质分类。形状比较的基本数学理论将得到扩展,并将开发新的算法来实现所产生的理论,并提供软件。此外,该软件还将应用于生物形状的集合,如蛋白质表面、面部数据库、骨骼和牙齿集合以及大脑皮层。该项目将开发新的数学失真测量方法,该方法基于各种测量方法,测量一个表面在另一个表面上拉伸所需的能量。给定两个表面或形状,将开发算法来产生它们之间的最佳对应或对齐。两个形状的差异或相似性将被捕获在新的距离函数中,该距离函数捕获几何相似性的方面。该项目建立在成功的现有方法,用于比较表面的拓扑结构的一个领域。这些方法将得到改进并扩展到更一般的曲面,允许比较具有一个、两个或多个手柄的曲面。过去的方法的基础上保角映射将被扩展到允许使用更一般的表面仿射。该项目还将在部分曲面或具有边界的曲面之间生成明确的对齐。这种部分表面匹配允许在仅测量了每个表面的一部分而其他部分被遮挡时匹配表面。它还允许具有不同拓扑结构的表面对之间的比较,克服了当前方法所面临的问题。最近引入的对称畸变能量将被扩展到这些更一般的情况下。将开发并提供执行这些几何算法的软件。 该软件将被设计为可供各种学科的科学家使用,并可能导致生物和医学理解的突破。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tangle decompositions of alternating link complements
交替链接补体的缠结分解
  • DOI:
    10.1215/00192082-9291846
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Hass, Joel;Thompson, Abigail;Tsvietkova, Anastasiia
  • 通讯作者:
    Tsvietkova, Anastasiia
Unraveling the Regional Specificities of Malbec Wines from Mendoza, Argentina, and from Northern California
  • DOI:
    10.3390/agronomy9050234
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Fushing, Hsieh;Lee, Olivia;Koehl, Patrice
  • 通讯作者:
    Koehl, Patrice
The distribution of knots in the Petaluma model
Petaluma 模型中结的分布
  • DOI:
    10.2140/agt.2018.18.3647
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Even-Zohar, C;Hass, J;Linial, N;Nowik, T
  • 通讯作者:
    Nowik, T
Parameterizing elastic network models to capture the dynamics of proteins
  • DOI:
    10.1002/jcc.26701
  • 发表时间:
    2021-06-11
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Koehl,Patrice;Orland,Henri;Delarue,Marc
  • 通讯作者:
    Delarue,Marc
Simultaneous Identification of Multiple Binding Sites in Proteins: A Statistical Mechanics Approach
同时鉴定蛋白质中的多个结合位点:统计力学方法
  • DOI:
    10.1021/acs.jpcb.1c02658
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Koehl, Patrice;Delarue, Marc;Orland, Henri
  • 通讯作者:
    Orland, Henri
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Hass其他文献

Probabilistic Estimates of Upset Caused by Single Event Transients
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joel Hass
  • 通讯作者:
    Joel Hass
Guaranteed consistency of surface intersections and trimmed surfaces using a coupled topology resolution and domain decomposition scheme
  • DOI:
    10.1007/s10444-005-7539-5
  • 发表时间:
    2006-08-09
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Joel Hass;Rida T. Farouki;Chang Yong Han;Xiaowen Song;Thomas W. Sederberg
  • 通讯作者:
    Thomas W. Sederberg
Geodesics and soap bubbles in surfaces
  • DOI:
    10.1007/pl00004560
  • 发表时间:
    1996-10-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Joel Hass;Frank Morgan
  • 通讯作者:
    Frank Morgan

Joel Hass的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joel Hass', 18)}}的其他基金

Fast Algorithms for Special Functions
特殊函数的快速算法
  • 批准号:
    1818820
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
  • 批准号:
    1760485
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Geometry and Topology of 3-manifolds Conference
三流形几何与拓扑会议
  • 批准号:
    1758107
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Conference on Future Directions in 3-Dimensional Topology; May 6-9, 2005; Ann Arbor, MI
三维拓扑未来方向会议;
  • 批准号:
    0455864
  • 财政年份:
    2005
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Complexity of algorithms in low-dimensional topology
低维拓扑算法的复杂性
  • 批准号:
    0306602
  • 财政年份:
    2003
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Low-dimensional manifolds and computation
低维流形和计算
  • 批准号:
    0072348
  • 财政年份:
    2000
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Geometry of Surfaces in Three Dimensional Manifolds
数学科学:三维流形中的曲面几何
  • 批准号:
    9704286
  • 财政年份:
    1997
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences "Normal Surface & Decision Problems in 3-Manifolds" August 26-30, 1996
NSF/CBMS 数学科学区域会议“法线表面
  • 批准号:
    9522519
  • 财政年份:
    1996
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Topology and Geometry of 3- Dimensional Manifolds
数学科学:3维流形的拓扑和几何
  • 批准号:
    9225055
  • 财政年份:
    1993
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometry and Topology of 3-Dimensional Manifolds
数学科学:三维流形的几何和拓扑
  • 批准号:
    9024796
  • 财政年份:
    1991
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
  • 批准号:
    2734768
  • 财政年份:
    2026
  • 资助金额:
    $ 25万
  • 项目类别:
    Studentship
Optimal cell factories for membrane protein production
用于膜蛋白生产的最佳细胞工厂
  • 批准号:
    BB/Y007603/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
  • 批准号:
    EP/X029093/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Fellowship
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
  • 批准号:
    2401019
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Labor Market Polarization, Earnings Inequality and Optimal Tax Progressivity: A Theoretical and Empirical Analysis
劳动力市场两极分化、收入不平等和最优税收累进性:理论与实证分析
  • 批准号:
    24K04909
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344765
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341950
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了