Fast Algorithms for Special Functions
特殊函数的快速算法
基本信息
- 批准号:1818820
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The importance of the numerical simulation of physical phenomena by computers cannot be overstated. Such computations have become an essential tool both in scientific research and in industrial applications. The computer codes for these simulations are usually constructed from basic building blocks, including algorithms that carry out calculations involving so-called "special functions." Broadly speaking, special functions are nothing more than functions which cannot be expressed in terms of elementary operations (e.g., addition, subtraction, and the computation of square roots) and which arise frequently enough in mathematical calculations to warrant a name. This project seeks to build more efficient and comprehensive libraries for a class of special functions which are solutions of equations known as second order differential equations. One of the principal uses of these special functions is in representing the solutions of much more complicated equations which model physical phenomena.To be more precise, this project seeks to develop fast algorithms for families of special function satisfying second order differential equations whose coefficients are nonoscillatory. There are no viable O(1) algorithms for evaluating many such families. Moreover, only in a few cases are asymptotically optimal algorithms for the corresponding special function transforms available, and many of those are not readily applicable in parallel computing environments. This is unfortunate given the many applications of extremely large-scale special function transforms, especially large-scale spherical harmonic transforms, which are widely used in astronomy and geophysics. The methods to be developed in this project are based on the fact that essentially all second order differential equations with nonoscillatory coefficients admit nonoscillatory phase functions. This not only provides a mechanism for the O(1) evaluation of special functions defined by second order differential equations, it also implies that the associated special function transforms are Fourier integral operators. Such operators can be applied in asymptotically optimal time by combining modern butterfly algorithms with algorithms for the O(1) evaluation of special functions. One of the key advantages of this methodology is that it is well-suited to parallel computing environments and large-scale computations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用计算机对物理现象进行数值模拟的重要性怎么强调都不为过。这种计算已经成为科学研究和工业应用中必不可少的工具。这些模拟的计算机代码通常是由基本的构建块构建的,包括执行涉及所谓的“特殊功能”的计算的算法。广义地说,特殊函数只不过是不能用初等运算(例如加法、减法和平方根计算)来表示的函数,它们在数学计算中出现得足够频繁,足以命名。这个项目旨在为一类特殊函数建立更有效和更全面的库,这些函数是被称为二阶微分方程组的方程的解。这些特殊函数的主要用途之一是表示更复杂的方程的解,这些方程是物理现象的模型。更准确地说,这个项目寻求为满足系数为非振荡的二阶微分方程组的特殊函数族开发快速算法。目前还没有可行的O(1)算法来评估许多这样的家庭。此外,对于相应的特殊函数变换,只有少数情况下才有渐近最优算法可用,而且其中许多算法在并行计算环境中并不容易应用。考虑到超大规模特殊函数变换的许多应用,特别是在天文学和地球物理中广泛使用的大规模球谐变换,这是不幸的。这个项目中将要开发的方法是基于这样一个事实,即基本上所有具有非振荡系数的二阶微分方程都允许非振荡相函数。这不仅为二阶微分方程组定义的特殊函数的O(1)求值提供了一种机制,还意味着与之相关的特殊函数变换是傅里叶积分算子。通过将现代蝶形算法与特殊函数的O(1)求值算法相结合,这种算子可以在渐近最优的时间内应用。这种方法的主要优势之一是它非常适合并行计算环境和大规模计算。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An algorithm for the rapid numerical evaluation of Bessel functions of real orders and arguments
- DOI:10.1007/s10444-018-9613-9
- 发表时间:2017-05
- 期刊:
- 影响因子:1.7
- 作者:J. Bremer
- 通讯作者:J. Bremer
Fast algorithms for Jacobi expansions via nonoscillatory phase functions
- DOI:10.1093/imanum/drz016
- 发表时间:2018-03
- 期刊:
- 影响因子:2.1
- 作者:J. Bremer;Haizhao Yang
- 通讯作者:J. Bremer;Haizhao Yang
An algorithm for the numerical evaluation of the associated Legendre functions that runs in time independent of degree and order
- DOI:10.1016/j.jcp.2018.01.014
- 发表时间:2017-07
- 期刊:
- 影响因子:0
- 作者:J. Bremer
- 通讯作者:J. Bremer
A quasilinear complexity algorithm for the numerical simulation of scattering from a two-dimensional radially symmetric potential
二维径向对称势散射数值模拟的拟线性复杂度算法
- DOI:10.1016/j.jcp.2020.109401
- 发表时间:2020
- 期刊:
- 影响因子:4.1
- 作者:Bremer, James
- 通讯作者:Bremer, James
On the numerical solution of second order ordinary differential equations in the high-frequency regime
高频域二阶常微分方程的数值解
- DOI:10.1016/j.acha.2016.05.002
- 发表时间:2018
- 期刊:
- 影响因子:2.5
- 作者:Bremer, James
- 通讯作者:Bremer, James
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Hass其他文献
Probabilistic Estimates of Upset Caused by Single Event Transients
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Joel Hass - 通讯作者:
Joel Hass
Guaranteed consistency of surface intersections and trimmed surfaces using a coupled topology resolution and domain decomposition scheme
- DOI:
10.1007/s10444-005-7539-5 - 发表时间:
2006-08-09 - 期刊:
- 影响因子:2.100
- 作者:
Joel Hass;Rida T. Farouki;Chang Yong Han;Xiaowen Song;Thomas W. Sederberg - 通讯作者:
Thomas W. Sederberg
Geodesics and soap bubbles in surfaces
- DOI:
10.1007/pl00004560 - 发表时间:
1996-10-01 - 期刊:
- 影响因子:1.000
- 作者:
Joel Hass;Frank Morgan - 通讯作者:
Frank Morgan
Joel Hass的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Hass', 18)}}的其他基金
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
- 批准号:
1760485 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Geometry and Topology of 3-manifolds Conference
三流形几何与拓扑会议
- 批准号:
1758107 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Computing Optimal Alignments of Surfaces
计算表面的最佳对齐方式
- 批准号:
1719582 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Conference on Future Directions in 3-Dimensional Topology; May 6-9, 2005; Ann Arbor, MI
三维拓扑未来方向会议;
- 批准号:
0455864 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Complexity of algorithms in low-dimensional topology
低维拓扑算法的复杂性
- 批准号:
0306602 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Low-dimensional manifolds and computation
低维流形和计算
- 批准号:
0072348 - 财政年份:2000
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Geometry of Surfaces in Three Dimensional Manifolds
数学科学:三维流形中的曲面几何
- 批准号:
9704286 - 财政年份:1997
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences "Normal Surface & Decision Problems in 3-Manifolds" August 26-30, 1996
NSF/CBMS 数学科学区域会议“法线表面
- 批准号:
9522519 - 财政年份:1996
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Mathematical Sciences: The Topology and Geometry of 3- Dimensional Manifolds
数学科学:3维流形的拓扑和几何
- 批准号:
9225055 - 财政年份:1993
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry and Topology of 3-Dimensional Manifolds
数学科学:三维流形的几何和拓扑
- 批准号:
9024796 - 财政年份:1991
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
DIMACS Special Focus on Mechanisms and Algorithms to Augment Human Decision Making
DIMACS 特别关注增强人类决策的机制和算法
- 批准号:
1941871 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Speeding up FPT algorithms with special tree decompositions
通过特殊的树分解加速 FPT 算法
- 批准号:
18K11168 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extension of Fast Numerical Algorithms for Special Functions retaining High Reliability, High Accuracy and High Portability
特殊功能快速数值算法的扩展,保持高可靠性、高精度和高可移植性
- 批准号:
16K16060 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
AF: Small: New Perspectives on Special Methods for Graph Algorithms
AF:小:图算法特殊方法的新视角
- 批准号:
1545587 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
AF: Small: New Perspectives on Special Methods for Graph Algorithms
AF:小:图算法特殊方法的新视角
- 批准号:
1319460 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Special Meeting: Workshop on Future Direction in Numerical Algorithms and Optimization
特别会议:数值算法与优化未来方向研讨会
- 批准号:
0633793 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Research in algorithms for special cases of NP-complete problems
NP完全问题特例算法研究
- 批准号:
302908-2005 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Postgraduate Scholarships - Master's
Special Meeting: Workshop on Algorithms for Modern, Massive Datasets
特别会议:现代海量数据集算法研讨会
- 批准号:
0532668 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Research in algorithms for special cases of NP-complete problems
NP完全问题特例算法研究
- 批准号:
302908-2004 - 财政年份:2004
- 资助金额:
$ 15万 - 项目类别:
Postgraduate Scholarships - Master's
Special Project: 1999 International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications
特别项目:1999年移动计算和通信离散算法与方法国际研讨会
- 批准号:
9908084 - 财政年份:1999
- 资助金额:
$ 15万 - 项目类别:
Standard Grant














{{item.name}}会员




