Complexity of algorithms in low-dimensional topology

低维拓扑算法的复杂性

基本信息

  • 批准号:
    0306602
  • 负责人:
  • 金额:
    $ 13.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

This proposal concerns computational aspects of the study of surfaces in three dimensional space. The Knot Recognition Problem, a key example of such problems, seeks a procedure to determine when two curves in 3-space can be deformed to one another. Its computational complexity, the number of steps required to run such an algorithm, is still not completely understood. Investigations into this problem have revealed intriguing and unexpected connections between complexity theory, low-dimensional topology, the question of how much area is required of a surface spanning a curve (a problem in differential geometry), and questions concerning how to construct surfaces with as few triangles as possible (part of computational geometry). The investigator plans to show that this problem, already known to be in a class of problems called NP, is also in a class called coNP. He further aims to improve both upper and lower bounds on the running times known for this and related problems, and to explore connections to computational and differential geometry.Three dimensional manifolds and the surfaces contained in them model objects that are found in the world we live in. Their mathematical theory is both natural and widely applicable. Computational issues are playing an increasing role in investigations in these areas. Computational complexity, a field in theoretical computer science, studies algorithms and their running times. Many important algorithms have geometric components, and geometric methods can lead to insights into efficient computation. Techniques originating in topology and geometry have led to improved algorithms in computer graphics, visualization, medical and molecular modeling and image recognition. The problems considered in this proposal concern the construction of algorithms to analyze the nature of geometrical objects, and the analysis of the computational complexity of these algorithms.
该建议涉及三维空间中曲面研究的计算方面。纽结识别问题,这类问题的一个重要例子,寻求一个过程,以确定何时在3空间中的两条曲线可以变形到另一个。它的计算复杂性,运行这样一个算法所需的步骤数量,仍然没有完全理解。对这个问题的研究揭示了复杂性理论、低维拓扑、曲面需要多大面积的问题(微分几何中的一个问题)和如何用尽可能少的三角形构造曲面的问题(计算几何的一部分)之间有趣而意想不到的联系。研究人员计划证明,这个问题,已经知道是在一类问题称为NP,也是在一类称为coNP。他进一步的目标是提高这一问题和相关问题的运行时间的上限和下限,并探索与计算几何和微分几何的联系。三维流形和其中包含的曲面模拟了我们生活的世界中的物体。他们的数学理论既自然又广泛适用。 计算问题在这些领域的调查中发挥着越来越大的作用。计算复杂性是理论计算机科学的一个领域,研究算法及其运行时间。许多重要的算法都有几何成分,几何方法可以帮助我们理解高效的计算。源自拓扑学和几何学的技术已经导致计算机图形学、可视化、医学和分子建模以及图像识别中的改进算法。 在这个建议中考虑的问题涉及的算法来分析几何对象的性质,并分析这些算法的计算复杂性的建设。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Hass其他文献

Probabilistic Estimates of Upset Caused by Single Event Transients
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joel Hass
  • 通讯作者:
    Joel Hass
Guaranteed consistency of surface intersections and trimmed surfaces using a coupled topology resolution and domain decomposition scheme
  • DOI:
    10.1007/s10444-005-7539-5
  • 发表时间:
    2006-08-09
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Joel Hass;Rida T. Farouki;Chang Yong Han;Xiaowen Song;Thomas W. Sederberg
  • 通讯作者:
    Thomas W. Sederberg
Geodesics and soap bubbles in surfaces
  • DOI:
    10.1007/pl00004560
  • 发表时间:
    1996-10-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Joel Hass;Frank Morgan
  • 通讯作者:
    Frank Morgan

Joel Hass的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joel Hass', 18)}}的其他基金

Fast Algorithms for Special Functions
特殊函数的快速算法
  • 批准号:
    1818820
  • 财政年份:
    2018
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
  • 批准号:
    1760485
  • 财政年份:
    2018
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
Geometry and Topology of 3-manifolds Conference
三流形几何与拓扑会议
  • 批准号:
    1758107
  • 财政年份:
    2018
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
Computing Optimal Alignments of Surfaces
计算表面的最佳对齐方式
  • 批准号:
    1719582
  • 财政年份:
    2017
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
Conference on Future Directions in 3-Dimensional Topology; May 6-9, 2005; Ann Arbor, MI
三维拓扑未来方向会议;
  • 批准号:
    0455864
  • 财政年份:
    2005
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
Low-dimensional manifolds and computation
低维流形和计算
  • 批准号:
    0072348
  • 财政年份:
    2000
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Geometry of Surfaces in Three Dimensional Manifolds
数学科学:三维流形中的曲面几何
  • 批准号:
    9704286
  • 财政年份:
    1997
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences "Normal Surface & Decision Problems in 3-Manifolds" August 26-30, 1996
NSF/CBMS 数学科学区域会议“法线表面
  • 批准号:
    9522519
  • 财政年份:
    1996
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Topology and Geometry of 3- Dimensional Manifolds
数学科学:3维流形的拓扑和几何
  • 批准号:
    9225055
  • 财政年份:
    1993
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometry and Topology of 3-Dimensional Manifolds
数学科学:三维流形的几何和拓扑
  • 批准号:
    9024796
  • 财政年份:
    1991
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Optimizing blood biopsy in cancers with low mutation burden and high structural complexity
优化突变负荷低、结构复杂性高的癌症的血液活检
  • 批准号:
    10789700
  • 财政年份:
    2023
  • 资助金额:
    $ 13.95万
  • 项目类别:
Scaling up the Next-Generation Communication Systems: from physically-consistent modelling to low complexity DSP algorithms to hardware implementation
扩展下一代通信系统:从物理一致的建模到低复杂度 DSP 算法再到硬件实现
  • 批准号:
    570045-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: CIF: Small: Low-Complexity Algorithms for Unsourced Multiple Access and Compressed Sensing in Large Dimensions
合作研究:CIF:小型:大维度无源多址和压缩感知的低复杂度算法
  • 批准号:
    2131115
  • 财政年份:
    2021
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Low-Complexity Algorithms for Unsourced Multiple Access and Compressed Sensing in Large Dimensions
合作研究:CIF:小型:大维度无源多址和压缩感知的低复杂度算法
  • 批准号:
    2131106
  • 财政年份:
    2021
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
CAREER: Theory and Algorithms for Efficient Control of Wireless Networks with Jointly Optimized Performance: High Throughput, Low Delay, and Low Complexity
职业:具有联合优化性能的无线网络高效控制的理论和算法:高吞吐量、低延迟和低复杂性
  • 批准号:
    2112694
  • 财政年份:
    2020
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Ultra-Low-Complexity Switching Algorithms for Scalable High Network Performance
CNS 核心:小型:超低复杂度交换算法,实现可扩展的高网络性能
  • 批准号:
    1909048
  • 财政年份:
    2019
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
Low-Complexity Algorithms for Sparse Conic Optimization with Applications to Energy Systems and Machine Learning
稀疏圆锥优化的低复杂度算法及其在能源系统和机器学习中的应用
  • 批准号:
    1808859
  • 财政年份:
    2018
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Wideband Multi-Beam Antenna Arrays: Low-Complexity Algorithms and Analog-CMOS Implementations
合作研究:宽带多波束天线阵列:低复杂度算法和模拟 CMOS 实现
  • 批准号:
    1902283
  • 财政年份:
    2018
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Wideband Multi-Beam Antenna Arrays: Low-Complexity Algorithms and Analog-CMOS Implementations
合作研究:宽带多波束天线阵列:低复杂度算法和模拟 CMOS 实现
  • 批准号:
    1711395
  • 财政年份:
    2017
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
CAREER: Theory and Algorithms for Efficient Control of Wireless Networks with Jointly Optimized Performance: High Throughput, Low Delay, and Low Complexity
职业:具有联合优化性能的无线网络高效控制的理论和算法:高吞吐量、低延迟和低复杂性
  • 批准号:
    1651947
  • 财政年份:
    2017
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了