Geometry and Topology of 3-manifolds Conference

三流形几何与拓扑会议

基本信息

  • 批准号:
    1758107
  • 负责人:
  • 金额:
    $ 1.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

This project supports a 4-day conference on "The geometry and topology of 3-manifolds" to be held May 25-28, 2018 at the Okinawa Institute of Science and Technology on the island of Okinawa in Japan. This conference will bring together a distinguished international group of about 60 participants to discuss recent developments in this area. The participants will be a diverse group of prominent researchers and promising junior mathematicians from Asia, Australia, Western Europe, and North America, with most participants being from Asia and the US. This award will provide funding for ten US based graduate students or recently graduated postdocs to attend the conference.The study of 3-manifolds from the classical topological viewpoint and its study from the geometric viewpoint have been increasingly overlapping. Among recent well-known results in the area are Perelman's solution of the Geometrization Conjecture (2006) and Agol's solution of the Virtual Haken Conjecture (2012). These results explore the interactions between the geometry and topology of 3-manifolds, but raise even more questions about the nature of these interactions. The conference will be devoted to new work that sheds light on this picture. Topics covered will connect to hyperbolic geometry, algorithmic methods, computational geometry, knot theory, geometric group theory, and new invariants. This workshop will provide a venue for an exchange of ideas between prominent Western topologists and leading researchers from Asia. It will feature approximately 16 speakers presenting recent research progress. Additionally, there will be a public lecture aimed at a general scientific audience.The conference website is athttps://groups.oist.jp/manifolds/workshopThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目支持将于2018年5月25日至28日在日本冲绳的冲绳科学技术研究所举行的为期4天的“三维流形的几何和拓扑”会议。 这次会议将汇集一个由大约60名与会者组成的杰出国际小组,讨论这一领域的最新发展。与会者将是来自亚洲、澳大利亚、西欧和北美的杰出研究人员和有前途的初级数学家,其中大多数与会者来自亚洲和美国。 该奖项将资助十名美国研究生或刚毕业的博士后参加会议。经典拓扑观点下的三维流形研究与几何观点下的三维流形研究日益重叠。最近在该领域的著名结果是Perelman的几何化猜想(2006年)和Agol的虚拟哈肯猜想(2012年)的解决方案。 这些结果探索了三维流形的几何和拓扑之间的相互作用,但对这些相互作用的性质提出了更多的问题。 会议将致力于阐明这一情况的新工作。主题涵盖将连接到双曲几何,算法方法,计算几何,纽结理论,几何群论,和新的不变量。这次研讨会将为西方著名拓扑学家和来自亚洲的主要研究人员之间的思想交流提供一个场所。 它将有大约16位发言者介绍最近的研究进展。此外,还将有一个面向普通科学观众的公开讲座。会议网站是:athtps:groups.oist.jp/manifolds/workshopThis奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Hass其他文献

Probabilistic Estimates of Upset Caused by Single Event Transients
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joel Hass
  • 通讯作者:
    Joel Hass
Geodesics and soap bubbles in surfaces
  • DOI:
    10.1007/pl00004560
  • 发表时间:
    1996-10-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Joel Hass;Frank Morgan
  • 通讯作者:
    Frank Morgan
Guaranteed consistency of surface intersections and trimmed surfaces using a coupled topology resolution and domain decomposition scheme
  • DOI:
    10.1007/s10444-005-7539-5
  • 发表时间:
    2006-08-09
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Joel Hass;Rida T. Farouki;Chang Yong Han;Xiaowen Song;Thomas W. Sederberg
  • 通讯作者:
    Thomas W. Sederberg

Joel Hass的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joel Hass', 18)}}的其他基金

Fast Algorithms for Special Functions
特殊函数的快速算法
  • 批准号:
    1818820
  • 财政年份:
    2018
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
  • 批准号:
    1760485
  • 财政年份:
    2018
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
Computing Optimal Alignments of Surfaces
计算表面的最佳对齐方式
  • 批准号:
    1719582
  • 财政年份:
    2017
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
Conference on Future Directions in 3-Dimensional Topology; May 6-9, 2005; Ann Arbor, MI
三维拓扑未来方向会议;
  • 批准号:
    0455864
  • 财政年份:
    2005
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
Complexity of algorithms in low-dimensional topology
低维拓扑算法的复杂性
  • 批准号:
    0306602
  • 财政年份:
    2003
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Continuing Grant
Low-dimensional manifolds and computation
低维流形和计算
  • 批准号:
    0072348
  • 财政年份:
    2000
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Geometry of Surfaces in Three Dimensional Manifolds
数学科学:三维流形中的曲面几何
  • 批准号:
    9704286
  • 财政年份:
    1997
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences "Normal Surface & Decision Problems in 3-Manifolds" August 26-30, 1996
NSF/CBMS 数学科学区域会议“法线表面
  • 批准号:
    9522519
  • 财政年份:
    1996
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Topology and Geometry of 3- Dimensional Manifolds
数学科学:3维流形的拓扑和几何
  • 批准号:
    9225055
  • 财政年份:
    1993
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometry and Topology of 3-Dimensional Manifolds
数学科学:三维流形的几何和拓扑
  • 批准号:
    9024796
  • 财政年份:
    1991
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
Geometry and Topology of Manifolds
流形的几何和拓扑
  • 批准号:
    RGPIN-2022-04539
  • 财政年份:
    2022
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Discovery Grants Program - Individual
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
  • 批准号:
    2203912
  • 财政年份:
    2022
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
  • 批准号:
    2231286
  • 财政年份:
    2022
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
Topology and Geometry from 3-Manifolds to Free Groups
从三流形到自由群的拓扑和几何
  • 批准号:
    2102018
  • 财政年份:
    2021
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Continuing Grant
Canada Research Chair In Geometry And Topology Of Manifolds
加拿大流形几何与拓扑研究主席
  • 批准号:
    CRC-2016-00234
  • 财政年份:
    2021
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Canada Research Chairs
Geometry and topology of 4-manifolds
4 流形的几何和拓扑
  • 批准号:
    2005327
  • 财政年份:
    2020
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
Canada Research Chair in Geometry and Topology of Manifolds
加拿大流形几何与拓扑研究主席
  • 批准号:
    CRC-2016-00234
  • 财政年份:
    2020
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Canada Research Chairs
Intrinsic Geometry, Topology, and Complexity of 3-Manifolds
三流形的本征几何、拓扑和复杂性
  • 批准号:
    2005496
  • 财政年份:
    2020
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
Canada Research Chair in Geometry and Topology of Manifolds
加拿大流形几何与拓扑研究主席
  • 批准号:
    CRC-2016-00234
  • 财政年份:
    2019
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Canada Research Chairs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了