Mathematical Sciences: The Geometry of Surfaces in Three Dimensional Manifolds
数学科学:三维流形中的曲面几何
基本信息
- 批准号:9704286
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9704286 Hass This project deals with the geometry of surfaces in three dimensional Riemannian manifolds. The focus is on isoperimetric problems and the theory of piecewise-linear minimal surfaces. A basic isoperimetric problem asks for the smallest area surface enclosing a given pair of volumes. The Double Bubble Conjecture asserts that the shape assumed by a compound soap bubble enclosing two regions answers this question. This conjecture was recently solved by the investigator, in collaboration with R. Schlafly, for two equal volumes, but the general case remains an open problem. The piecewise-linear theory of surfaces considers surfaces which are glued together from flat pieces, much like the surfaces constructed in computer graphics. The problems considered in this project relate to processes in nature which determine the shape of soap bubbles, the erosion of boulders, the melting of ice, crystal growth, flame propagation, image enhancement and the evaporation of puddles. The piecewise-linear theory of surfaces can be applied to the classification, enumeration and algorithmic recognition of various surfaces .
9704286 HASS这个项目涉及三维Riemannian歧管的表面几何形状。重点是等等问题和分段线性最小表面的理论。一个基本的等速度问题要求封闭给定体积的最小区域表面。双重气泡猜想断言,封闭两个区域的化合物肥皂泡假定的形状回答了这个问题。该猜想最近由研究人员与R. Schlafly合作解决了两个相等的批量,但总体情况仍然是一个空旷的问题。表面的分段线性理论认为表面是从平坦的碎片中粘合在一起的,就像计算机图形中构建的表面一样。 该项目中考虑的问题与自然界的过程有关,这些过程决定了肥皂泡的形状,巨石的侵蚀,冰的融化,晶体生长,火焰传播,图像增强和水坑的蒸发。表面的分段线性理论可以应用于各种表面的分类,枚举和算法识别。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Hass其他文献
Probabilistic Estimates of Upset Caused by Single Event Transients
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Joel Hass - 通讯作者:
Joel Hass
Joel Hass的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Hass', 18)}}的其他基金
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
- 批准号:
1760485 - 财政年份:2018
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Geometry and Topology of 3-manifolds Conference
三流形几何与拓扑会议
- 批准号:
1758107 - 财政年份:2018
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Computing Optimal Alignments of Surfaces
计算表面的最佳对齐方式
- 批准号:
1719582 - 财政年份:2017
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Conference on Future Directions in 3-Dimensional Topology; May 6-9, 2005; Ann Arbor, MI
三维拓扑未来方向会议;
- 批准号:
0455864 - 财政年份:2005
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Complexity of algorithms in low-dimensional topology
低维拓扑算法的复杂性
- 批准号:
0306602 - 财政年份:2003
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Low-dimensional manifolds and computation
低维流形和计算
- 批准号:
0072348 - 财政年份:2000
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
NSF/CBMS Regional Conference in the Mathematical Sciences "Normal Surface & Decision Problems in 3-Manifolds" August 26-30, 1996
NSF/CBMS 数学科学区域会议“法线表面
- 批准号:
9522519 - 财政年份:1996
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Mathematical Sciences: The Topology and Geometry of 3- Dimensional Manifolds
数学科学:3维流形的拓扑和几何
- 批准号:
9225055 - 财政年份:1993
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry and Topology of 3-Dimensional Manifolds
数学科学:三维流形的几何和拓扑
- 批准号:
9024796 - 财政年份:1991
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
相似国自然基金
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
- 批准号:72374095
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于成分转化-体内时空分布-空间代谢组学整体耦联阐释女贞子蒸制的科学内涵
- 批准号:82374041
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
虚拟实验环境下科学探究过程自动监测与适应性反馈研究
- 批准号:62377005
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胆汁酸/CCL2/CCR2+TAMs代谢免疫穿越调控探讨乳腺癌“肝——乳”轴科学内涵与干预研究
- 批准号:82374446
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
DMS/NIGMS 1: Topological Dynamics Models of Protein Function
DMS/NIGMS 1:蛋白质功能的拓扑动力学模型
- 批准号:
10794436 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Prisms, a novel immersive learning platform to increase proficiency on bottleneck topics in secondary STEM
Prisms,一种新颖的沉浸式学习平台,可提高中学 STEM 瓶颈主题的熟练程度
- 批准号:
10252740 - 财政年份:2021
- 资助金额:
$ 10.5万 - 项目类别:
A Virtual Project-Based Learning Sandbox for Mimetics and Medically Inspired Classroom Engineering (MiMICRE)
用于模仿和医学启发课堂工程的基于虚拟项目的学习沙盒 (MiMICRE)
- 批准号:
10254459 - 财政年份:2021
- 资助金额:
$ 10.5万 - 项目类别:
The collaborative research on the development of class lessons and curriculum coherent from elementary to secondary mathematics in terms of the linkage between plane and spatial geometry
平面与空间几何之间联系的小学至中学数学课堂课程和课程开发的协作研究
- 批准号:
20H01745 - 财政年份:2020
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Dense life-log health analytics from wearable senors using functional analysis and Riemannian geometry
使用功能分析和黎曼几何对可穿戴传感器进行密集生命日志健康分析
- 批准号:
10023190 - 财政年份:2019
- 资助金额:
$ 10.5万 - 项目类别: