Low-dimensional manifolds and computation

低维流形和计算

基本信息

  • 批准号:
    0072348
  • 负责人:
  • 金额:
    $ 16.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-15 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

Abstract for NSF proposalLow Dimensional Manifolds and ComputationThis project concerns problems in low-dimensional topology and geometry, with an emphasis on computational aspects. Manifolds in two and three dimensions provide the geometric models for many physical phenomena. Computational issues are playing an increasing role in mathematical investigations in these areas. Research in low-dimensional manifolds in turn is making contributions to computational geometry and topology. It alsoimpacts computational complexity theory, which studies questions such as how long it takes a computer to solve a problem. Techniques of computational topology have already led to improvements in algorithmsin computer graphics, visualization, medical and molecular modeling and image recognition. Several problems on the theme of computational topology will be investigated in this project. The computational complexity of many important problems in topology and geometry is unknown, even when explicit algorithms exist. Recent results have revealed intriguing connections between complexity theory, minimal surface theory, normal surface theory and isoperimetric problems. The project will pursue research in this direction, examining the complexity of Knot Recognition, Knot Genus, Homology Genusand related topological problems. The project also includes plans to investigate the generalized theory of normal surfaces. Normal surfacesare particularly simple surfaces relative to a fixed triangulation ofa 3-manifold. They are the analogs of minimal surfaces in the PL Category. The collection of such surfaces is discrete and well suited to computation, leading to applications in classification, complexity, enumeration and algorithmic recognition. Index-one, or almost normal surfaces, were applied with spectacular success in recent work on manifold recognition. A third focus of the project concerns multi-region isoperimetric problems, which ask what are the shortest boundaries enclosing multiple regions of a given size. The goal is to give a mathematical proof that the configurations assumed by soap bubbles are optimal. Questions such as finding the shortest curve enclosing three given areas in the plane remain open. Also missing is an understanding of general properties of stable soap-bubble-like configurations, such as whether the minimizing configurations always have connected regions. Finally, the project examines questions of curve and surface evolution, using ideas based on normal surfaces. Such evolution methods have the potential for practical applications in many areas, similar to the many applications of mean curvature evolution.
摘要NSF proposalLow Dimensional Manifolds and ComputationThis project concerns problems in low dimensional topology and geometry,with a statistical aspect.二维和三维流形为许多物理现象提供了几何模型。计算问题在这些领域的数学研究中发挥着越来越重要的作用。低维流形的研究反过来又为计算几何和拓扑学做出了贡献。它也影响了计算复杂性理论,该理论研究计算机解决问题需要多长时间。计算拓扑学技术已经导致了计算机图形学、可视化、医学和分子建模以及图像识别算法的改进。 本计画将探讨计算拓扑学的几个问题。拓扑学和几何学中许多重要问题的计算复杂性是未知的,即使存在显式算法。最近的研究结果揭示了复杂性理论、极小曲面理论、正规曲面理论和等周问题之间的有趣联系。该项目将在这个方向上进行研究,研究结识别,结属,同源属和相关拓扑问题的复杂性。该项目还包括计划调查正常表面的广义理论。法向曲面是相对于三维流形的固定三角剖分而言特别简单的曲面。它们是PL范畴中极小曲面的类似物。这些表面的集合是离散的,非常适合于计算,导致分类,复杂性,枚举和算法识别中的应用。指数一,或几乎正常的表面,被应用于壮观的成功,在最近的工作流形识别。该项目的第三个重点是多区域等周问题,它问什么是封闭给定大小的多个区域的最短边界。我们的目标是给出一个数学证明,肥皂泡假设的配置是最佳的。诸如在平面中找到包围三个给定区域的最短曲线之类的问题仍然没有解决。同样缺少的是对稳定的肥皂泡状构型的一般性质的理解,例如最小化构型是否总是具有连通区域。 最后,该项目将使用基于法向曲面的思想来研究曲线和曲面的演化问题。这种演化方法在许多领域具有实际应用的潜力,类似于平均曲率演化的许多应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Hass其他文献

Probabilistic Estimates of Upset Caused by Single Event Transients
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joel Hass
  • 通讯作者:
    Joel Hass
Guaranteed consistency of surface intersections and trimmed surfaces using a coupled topology resolution and domain decomposition scheme
  • DOI:
    10.1007/s10444-005-7539-5
  • 发表时间:
    2006-08-09
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Joel Hass;Rida T. Farouki;Chang Yong Han;Xiaowen Song;Thomas W. Sederberg
  • 通讯作者:
    Thomas W. Sederberg
Geodesics and soap bubbles in surfaces
  • DOI:
    10.1007/pl00004560
  • 发表时间:
    1996-10-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Joel Hass;Frank Morgan
  • 通讯作者:
    Frank Morgan

Joel Hass的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joel Hass', 18)}}的其他基金

Fast Algorithms for Special Functions
特殊函数的快速算法
  • 批准号:
    1818820
  • 财政年份:
    2018
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
  • 批准号:
    1760485
  • 财政年份:
    2018
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Geometry and Topology of 3-manifolds Conference
三流形几何与拓扑会议
  • 批准号:
    1758107
  • 财政年份:
    2018
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Computing Optimal Alignments of Surfaces
计算表面的最佳对齐方式
  • 批准号:
    1719582
  • 财政年份:
    2017
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Conference on Future Directions in 3-Dimensional Topology; May 6-9, 2005; Ann Arbor, MI
三维拓扑未来方向会议;
  • 批准号:
    0455864
  • 财政年份:
    2005
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Complexity of algorithms in low-dimensional topology
低维拓扑算法的复杂性
  • 批准号:
    0306602
  • 财政年份:
    2003
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Geometry of Surfaces in Three Dimensional Manifolds
数学科学:三维流形中的曲面几何
  • 批准号:
    9704286
  • 财政年份:
    1997
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences "Normal Surface & Decision Problems in 3-Manifolds" August 26-30, 1996
NSF/CBMS 数学科学区域会议“法线表面
  • 批准号:
    9522519
  • 财政年份:
    1996
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Topology and Geometry of 3- Dimensional Manifolds
数学科学:3维流形的拓扑和几何
  • 批准号:
    9225055
  • 财政年份:
    1993
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometry and Topology of 3-Dimensional Manifolds
数学科学:三维流形的几何和拓扑
  • 批准号:
    9024796
  • 财政年份:
    1991
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
  • 批准号:
    81150011
  • 批准年份:
    2011
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
肝脏管道系统数字化及三维成像的研究
  • 批准号:
    30470493
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
  • 批准号:
    RGPIN-2020-05343
  • 财政年份:
    2022
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Geometric Analysis, Monopoles, and Applications to Low-Dimensional Manifolds
合作研究:几何分析、单极子以及低维流形的应用
  • 批准号:
    2104871
  • 财政年份:
    2021
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Geometric Analysis, Monopoles, and Applications to Low-Dimensional Manifolds
合作研究:几何分析、单极子以及低维流形的应用
  • 批准号:
    2104865
  • 财政年份:
    2021
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
  • 批准号:
    RGPIN-2020-05343
  • 财政年份:
    2021
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Discovery Grants Program - Individual
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
  • 批准号:
    RGPIN-2020-05343
  • 财政年份:
    2020
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Discovery Grants Program - Individual
Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
  • 批准号:
    1949209
  • 财政年份:
    2019
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Continuing Grant
Classical and quantum invariants of low-dimensional manifolds
低维流形的经典和量子不变量
  • 批准号:
    DP190102363
  • 财政年份:
    2019
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Discovery Projects
The Topology and Geometry of Low-dimensional Manifolds
低维流形的拓扑和几何
  • 批准号:
    1832173
  • 财政年份:
    2018
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Higher dimensional representations of fundamental groups of low-dimentional manifolds and geometric structures
低维流形和几何结构的基本群的高维表示
  • 批准号:
    18K03266
  • 财政年份:
    2018
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了