Simulation and Inference Algorithms for Stochastic Differential Equations

随机微分方程的模拟和推理算法

基本信息

  • 批准号:
    1723272
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

In fields such as neuroscience, biochemistry, molecular and cellular biology, statistical physics and finance, many researchers have invested time to build first-principle mathematical models. Stochastic differential equations (SDE), a subset of such models, naturally account for the combined effects of nonlinearity and noise, effects observed in many systems of contemporary interest. Such models often have large numbers of parameters that cannot be directly observed. Researchers collect data from the system they are studying and seek to use this data to infer parameters in their models. Alternatively, researchers who begin with data from a particular system typically desire forecasts regarding the future behavior of the system and, especially in scientific contexts, explanations as to why the system behaves the way that it does. In this project, the PI will develop algorithms, methods, and open-source software packages that significantly improve a researcher's ability to infer parameters in stochastic models, and to develop stochastic models with strong predictive and/or explanatory power. The new methods will naturally accommodate data with one or more pathologies, such as irregular observation times, large volume, and non-Gaussian (i.e., heavy-tailed) features.The crux of the inference problem is the computation of the likelihood function associated with time series observations of an SDE model. Prior work has shown that, among deterministic methods for this inference problem, methods based on Fokker-Planck solvers are the most accurate. For SDE driven by standard Brownian motion, density tracking by quadrature (DTQ) computes likelihoods orders of magnitude faster than comparable Fokker-Planck solvers for the same level of error. Building on this foundation, this work seeks to develop DTQ-based inference methods that are more accurate, efficient and scalable than existing techniques. The PI will generalize DTQ to Levy-driven SDE, increase DTQ's efficiency through higher-order approximations, design scalable adjoint methods to compute gradients of the likelihood, and apply these adjoint methods to maximize log likelihoods and log posteriors. The PI will also conduct a thorough comparison of SDE inference techniques, including approximate inference through methods such as expectation maximization and variational Bayes. A key part of the project is the development of software infrastructure in the form of open-source packages for use with frameworks such as R, Python, and Apache Spark. These packages will enable all interested researchers, especially those with no advanced training in stochastics, to make use of DTQ-based simulation and inference methods. All new codes developed in this project will be thoroughly documented and tested. The PIs also plan to release the software developed as open source and build a user community around the language by ensuring that interested researchers are able to contribute to the codebase of the software developed. This will allow a wider growth of the project. This aspect is of special interest to the software cluster in the Office of Advanced Cyberinfrastructure, which has provided co-funding for this award.
在神经科学、生物化学、分子和细胞生物学、统计物理学和金融学等领域,许多研究人员都投入了时间来建立第一原理数学模型。 随机微分方程(Stochastic Differential Equations,简称SDs)是这类模型的一个子集,它自然地解释了非线性和噪声的组合效应,这些效应在当代许多感兴趣的系统中观察到。 这些模型通常具有大量无法直接观察到的参数。 研究人员从他们正在研究的系统中收集数据,并试图使用这些数据来推断模型中的参数。 或者,研究人员开始从一个特定的系统的数据通常希望预测系统的未来行为,特别是在科学背景下,解释为什么系统的行为方式。 在这个项目中,PI将开发算法,方法和开源软件包,显着提高研究人员推断随机模型参数的能力,并开发具有强大预测和/或解释能力的随机模型。 新方法将自然地适应具有一种或多种病理的数据,例如不规则的观察时间、大体积和非高斯(即,推断问题的关键是计算与时间序列观测值相关的似然函数。 先前的工作表明,在确定性方法中,基于福克-普朗克解算器的方法是最准确的。 对于由标准布朗运动驱动的混沌,密度跟踪求积(DTQ)计算的可能性数量级比同等误差水平的福克-普朗克求解器快。在此基础上,这项工作旨在开发基于DTQ的推理方法,比现有技术更准确,更高效,更可扩展。 PI将DTQ推广到Levy驱动的递归,通过高阶近似提高DTQ的效率,设计可扩展的伴随方法来计算似然的梯度,并应用这些伴随方法来最大化对数似然和对数后验。 PI还将对可预测推理技术进行全面比较,包括通过期望最大化和变分贝叶斯等方法进行近似推理。 该项目的一个关键部分是以开源软件包的形式开发软件基础设施,用于R,Python和Apache Spark等框架。 这些软件包将使所有感兴趣的研究人员,特别是那些没有受过随机学高级培训的研究人员,能够利用基于DTQ的模拟和推理方法。 在这个项目中开发的所有新代码将被彻底记录和测试。PI还计划发布作为开源开发的软件,并通过确保感兴趣的研究人员能够为所开发软件的代码库做出贡献,围绕该语言建立一个用户社区。这将使该项目得到更广泛的发展。高级网络基础设施办公室的软件集群对此特别感兴趣,该办公室为该奖项提供了共同资助。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimating Vector Fields from Noisy Time Series
从噪声时间序列估计向量场
  • DOI:
    10.1109/ieeeconf51394.2020.9443354
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bhat, Harish S.;Reeves, Majerle;Raziperchikolaei, Ramin
  • 通讯作者:
    Raziperchikolaei, Ramin
Learning Stochastic Dynamical Systems via Bridge Sampling
通过桥采样学习随机动力系统
A Block Coordinate Descent Proximal Method for Simultaneous Filtering and Parameter Estimation
同时滤波和参数估计的块坐标下降近似法
A Nonautonomous Equation Discovery Method for Time Signal Classification
时间信号分类的非自治方程发现方法
Driving Markov Chains to Desired Equilibria via Linear Programming
通过线性规划将马尔可夫链驱动至所需的均衡
  • DOI:
    10.1109/ieeeconf44664.2019.9048874
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bhat, Harish S.;Huang, Li-Hsuan;Rodriguez, Sebastian
  • 通讯作者:
    Rodriguez, Sebastian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harish Bhat其他文献

Harish Bhat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harish Bhat', 18)}}的其他基金

Collaborative Research: Algorithms for Simulation and Design of Analog VLSI Lattices
合作研究:模拟 VLSI 晶格的仿真和设计算法
  • 批准号:
    0913048
  • 财政年份:
    2009
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Algorithms for Simulation and Design of Analog VLSI Lattices
合作研究:模拟 VLSI 晶格的仿真和设计算法
  • 批准号:
    0753983
  • 财政年份:
    2007
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Algorithms for Simulation and Design of Analog VLSI Lattices
合作研究:模拟 VLSI 晶格的仿真和设计算法
  • 批准号:
    0713722
  • 财政年份:
    2007
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
  • 批准号:
    2237322
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
PRIMES: Practical Inference Algorithms to Detect Hybridization
PRIMES:检测杂交的实用推理算法
  • 批准号:
    2331660
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2341725
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Investigation and deployment of novel Bayesian inference algorithms in CAVATICA for identifying genomic variants underlying congenital heart defects in Down syndrome individuals
在 CAVATICA 中研究和部署新型贝叶斯推理算法,用于识别唐氏综合症个体先天性心脏缺陷的基因组变异
  • 批准号:
    10658217
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
  • 批准号:
    EP/Y037375/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2212508
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Estimation and Inference via Computational Statistics Algorithms
通过计算统计算法进行估计和推理
  • 批准号:
    RGPIN-2019-04142
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Development of robust statistical and machine learning algorithms for extrapolation in causal inference
开发用于因果推理外推的稳健统计和机器学习算法
  • 批准号:
    2740759
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2212512
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了