EAGER: SCH: Distributed and Adaptive Personalized Medicine
EAGER:SCH:分布式和自适应个性化医疗
基本信息
- 批准号:1723483
- 负责人:
- 金额:$ 28.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The quality of medical practice can be improved by the use of clinical data. However, current empirical approaches are developed on population averages and individual differences are often ignored. Furthermore, these approaches are static and fail to learn and change over time in an adaptive fashion. As a result, the science of medicine is not yet personalized and adaptive based on all the available data. Integrating medicine, engineering, and state-of-the-art information technology, this project aims at studying distributed and adaptive personalized medicine that collectively learns from an individual's clinical data in real time. This approach is inspired by collective and adaptive learning observed in nature (for example, honeybee swarming behavior, bird flight formation, etc.). The outcome of this project will enable smarter diagnosis, treatment, and prevention tailored towards individual patients. It will be disseminated widely through publications, seminars, workshops, and MOOC (Massive Open Online Course) development. The use of clinical data is at the core of medical practice today and, while various mathematical and computational approaches have been developed, conventional approaches are not geared towards individual patients or the dynamics of constantly changing clinical data. Inspired by studies of multicellular dynamics, this project explores distributed and adaptive personalized medicine which collectively learns from an individual's clinical data in real time through localized interactions. To make these efforts possible and scalable, this project will exploit a microservice (actor model)-enabled cloud cyberinfrastructure for increased accessibility, adaptability, interoperability, extensibility, scalability and sustainability. In addition, the result of this project, including the mathematical framework, can be applied to other domains, such as education, energy, telecommunications, and transportation. It will also be disseminated to academia through publications, seminars, workshops, and a MOOC to integrate the results of this work into interdisciplinary biomedical informatics research. All tools and documentation will be made available on GitHub so that a sustainable community can be formed around the project.
通过临床数据的使用,可以提高医疗实践的质量。然而,目前的经验方法是根据总体平均数制定的,而个体差异往往被忽视。此外,这些方法是静态的,不能以自适应的方式随着时间的推移而学习和改变。因此,医学科学尚未基于所有可用数据进行个性化和自适应。该项目整合了医学、工程和最先进的信息技术,旨在研究分布式和自适应个性化医学,这些医学可以真实的实时从个人的临床数据中集体学习。这种方法受到自然界中观察到的集体和适应性学习的启发(例如,蜜蜂群集行为,鸟类飞行编队等)。该项目的成果将使更智能的诊断,治疗和预防针对个别患者。它将通过出版物、研讨会、讲习班和MOOC(大规模开放式在线课程)开发广泛传播。 临床数据的使用是当今医疗实践的核心,虽然已经开发了各种数学和计算方法,但传统方法并不适合个体患者或不断变化的临床数据的动态。受多细胞动力学研究的启发,该项目探索分布式和自适应个性化医疗,通过本地化的相互作用,在真实的时间内从个人的临床数据中集体学习。 为了使这些努力成为可能和可扩展的,该项目将利用微服务(演员模型)启用云网络基础设施,以提高可访问性,适应性,互操作性,可扩展性,可扩展性和可持续性。 此外,该项目的成果,包括数学框架,可以应用于其他领域,如教育,能源,电信和运输。它还将通过出版物,研讨会,讲习班和MOOC传播给学术界,以将这项工作的成果融入跨学科生物医学信息学研究。所有工具和文档都将在GitHub上提供,以便围绕该项目形成可持续的社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong-Jun Shin其他文献
Yong-Jun Shin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于生物类芬顿的LA/Sch@BB耦合系统去除水产养殖尾水中抗生素的效果与机制研究
- 批准号:42377063
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
具有低聚合收缩和生态防龋双功能的埃洛石纳米管@SCH-79797改性复合树脂的研究
- 批准号:82170950
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
一类稳态Schödinger-Poisson-Slater方程标准化解的研究
- 批准号:11501137
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
锥中修改的Poisson-Sch积分在无穷远点处的渐近行为及其应用
- 批准号:U1304102
- 批准年份:2013
- 资助金额:30.0 万元
- 项目类别:联合基金项目
酵母中Sch9蛋白激酶信号途径调控衰老的分子机理
- 批准号:30671181
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Open Access Block Award 2024 - London Sch of Hygiene & Tropic. Medicine
2024 年开放访问区块奖 - 伦敦卫生学院
- 批准号:
EP/Z532368/1 - 财政年份:2024
- 资助金额:
$ 28.81万 - 项目类别:
Research Grant
CRII: SCH: Towards Smart Patient Flow Management: Real-time Inpatient Length of Stay Modeling and Prediction
CRII:SCH:迈向智能患者流程管理:实时住院患者住院时间建模和预测
- 批准号:
2246158 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
Standard Grant
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306660 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
- 批准号:
2306708 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306790 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
Standard Grant
SCH: Computer Vision Algorithms to Detect Tics In Patients with Tourette Syndrome
SCH:用于检测抽动秽语综合征患者抽动的计算机视觉算法
- 批准号:
10817272 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
SCH: A Novel Bias-mitigated Multimodal Oxygen Monitor
SCH:一种新型的消除偏差的多模式氧监测仪
- 批准号:
10816771 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
CRII: SCH: Domain-guided Machine Learning for Clinical Decision Support in Epilepsy
CRII:SCH:用于癫痫临床决策支持的领域引导机器学习
- 批准号:
2344731 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
Standard Grant