Collaborative Research: Thermodynamic and Dynamic Drivers of the Arctic Sea Ice Mass Budget at MOSAiC

合作研究:MOSAiC 北极海冰质量预算的热力学和动态驱动因素

基本信息

  • 批准号:
    1724551
  • 负责人:
  • 金额:
    $ 159.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Energy fluxes to the sea ice, and the processes that control them in time and space, comprise some of the largest uncertainties in current models of the central Arctic system and are likely changing as the sea ice thins. This project will make observations to provide the type of information that model developers need for representing emergent Arctic processes. These observations will be the first set of comprehensive, coupled atmosphere-ice-ocean energy and momentum flux measurements collected within a well-defined network. They will enable a process-based understanding of ice thermodynamics and dynamics via synergistic use of a coupled model. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition is a tremendous opportunity to leverage large US and international investments MOSAiC is motivated by the changing Arctic system and declining sea ice, and their significant implications for the global climate system and numerous stakeholders. The initiative seeks to address leading deficiencies in model representation of coupled, atmosphere-ice-ocean processes in the Arctic system through intensive, year-round observations from a drifting station in the central Arctic and coordinated multi-scale modeling. This project will examine the detailed interplay of sea-ice thermodynamic and dynamic processes and how they control the state of the ice over a full year. This project will entail an observational array of five nodes installed at approximately 15 km separation in the central Arctic sea ice, each of which has systems to measure continuously the states of the upper ocean and lower atmosphere, the heat and momentum fluxes from the ocean and atmosphere to the ice, and the ice thermodynamic state and mass balance. A network of position buoys will be used to measure ice movement and deformation across the observing domain. Regional, coupled-system model simulations will provide the means to synthesize observational information towards process understanding. Together these tools will be used to build comprehensive sea ice energy, upper ocean heat, and sea-ice momentum budgets, examine how these co-vary in space and time over all seasons, and develop temporally-evolving process relationships among multiple key parameters. They will use the detailed observations and coupled regional model to examine how energy transfer processes (thermodynamics) are influenced by sea-ice deformation (dynamics) on sub-seasonal to seasonal time scales, and they will assess sea-ice predictability related to dynamic and thermodynamic process relationships, using a full year of quasi-operational, 10-day sea-ice forecasts. Improved predictive models are an important means for addressing major societal needs related to Arctic change and declining sea ice. The project will provide an observational and process-based foundation for model development that has been called for by model developers and international experts. Moreover, it will offer insight into the sources of sea ice predictability, which will help to constrain future research pathways for improved sea ice models. The observations will enable a wide array of coupled system research that reaches well beyond the proposed project to impact research on other aspects of the Arctic physical, biological, and biogeochemical systems. Moreover, this project will support development towards autonomous ocean and atmospheric flux measurements that will help fill critical gaps in the Arctic observing network. Educational content developed around the project's research themes will support student learning on the physics of the Arctic system and enable broader scientific outreach efforts.
流向海冰的能量以及在时间和空间上控制它们的过程,构成了目前北极中部系统模型中最大的一些不确定性,并可能随着海冰变薄而发生变化。该项目将进行观测,以提供模型开发人员代表北极紧急过程所需的信息类型。这些观测结果将是在一个定义明确的网络内收集的第一套全面的、耦合的大气-冰-海洋能量和动量通量测量结果。他们将通过协同使用耦合模型,实现对冰热力学和动力学的基于过程的理解。北极气候研究多学科漂流观测站(MOSAiC)考察是利用美国和国际投资的巨大机会,MOSAiC的动机是北极系统的变化和海冰的减少,以及它们对全球气候系统和众多利益相关者的重大影响。该倡议力求通过北极中部一个漂流站的密集全年观测和协调的多尺度建模,解决北极系统大气-冰-海洋耦合过程模型表示方面的主要缺陷。该项目将研究海冰热力学和动力学过程的详细相互作用,以及它们如何控制全年的冰状态。该项目将需要在北极海冰中部每隔约15公里安装一个由五个节点组成的观测阵列,每个节点都有连续测量上层海洋和下层大气的状态、从海洋和大气到冰的热量和动量通量以及冰的热力学状态和质量平衡的系统。将使用一个定位浮标网来测量整个观测区域的冰的移动和变形。区域耦合系统模型模拟将提供综合观测信息以了解过程的手段。这些工具将用于建立全面的海冰能量,上层海洋热量和海冰动量预算,研究这些在所有季节的空间和时间中如何共同变化,并在多个关键参数之间建立时间演变的过程关系。他们将使用详细的观测和耦合的区域模型来研究能量转移过程(热力学)如何受到海冰变形(动力学)在亚季节到季节时间尺度上的影响,他们将使用全年准业务10天海冰预报来评估与动力学和热力学过程关系有关的海冰可预测性。改进预测模型是满足与北极变化和海冰减少有关的主要社会需求的重要手段。该项目将为模型开发人员和国际专家所要求的模型开发提供一个基于观测和进程的基础。此外,它将提供对海冰可预测性来源的深入了解,这将有助于限制未来改进海冰模型的研究途径。这些观测将使广泛的耦合系统研究远远超出拟议的项目,影响对北极物理,生物和地球化学系统的其他方面的研究。此外,该项目将支持发展自主的海洋和大气通量测量,这将有助于填补北极观测网络的关键空白。围绕该项目研究主题开发的教育内容将支持学生学习北极系统的物理学,并实现更广泛的科学外展工作。

项目成果

期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The winter central Arctic surface energy budget: A model evaluation using observations from the MOSAiC campaign
冬季北极中部地表能量收支:利用 MOSAiC 活动观测结果进行模型评估
  • DOI:
    10.1525/elementa.2022.00104
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Solomon, Amy;Shupe, Matthew D.;Svensson, Gunilla;Barton, Neil P.;Batrak, Yurii;Bazile, Eric;Day, Jonathan J.;Doyle, James D.;Frank, Helmut P.;Keeley, Sarah
  • 通讯作者:
    Keeley, Sarah
The characteristics of atmospheric boundary layer height over the Arctic Ocean during MOSAiC
  • DOI:
    10.5194/acp-23-8683-2023
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Shijie Peng;Qinghua Yang;M. Shupe;Xingya Xi;Bo Han;Dake Chen;S. Dahlke;Changwei Liu
  • 通讯作者:
    Shijie Peng;Qinghua Yang;M. Shupe;Xingya Xi;Bo Han;Dake Chen;S. Dahlke;Changwei Liu
Low ozone dry deposition rates to sea ice during the MOSAiC field campaign: Implications for the Arctic boundary layer ozone budget
  • DOI:
    10.1525/elementa.2022.00086
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Barten;L. Ganzeveld;G. Steeneveld;B. Blomquist;H. Angot;S. Archer;L. Bariteau;Ivo Beck;M. Boyer;P. von der Gathen;D. Helmig;D. Howard;J. Hueber;H. Jacobi;T. Jokinen;T. Laurila;Kevin M. Posman;L. Quéléver;J. Schmale;M. Shupe;M. Krol
  • 通讯作者:
    J. Barten;L. Ganzeveld;G. Steeneveld;B. Blomquist;H. Angot;S. Archer;L. Bariteau;Ivo Beck;M. Boyer;P. von der Gathen;D. Helmig;D. Howard;J. Hueber;H. Jacobi;T. Jokinen;T. Laurila;Kevin M. Posman;L. Quéléver;J. Schmale;M. Shupe;M. Krol
Warm air intrusions reaching the MOSAiC expedition in April 2020—The YOPP targeted observing period (TOP)
2020 年 4 月,暖空气入侵 MOSAiC 探险队 — YOPP 目标观测期 (TOP)
  • DOI:
    10.1525/elementa.2023.00016
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Svensson, Gunilla;Murto, Sonja;Shupe, Matthew D.;Pithan, Felix;Magnusson, Linus;Day, Jonathan J.;Doyle, James D.;Renfrew, Ian A.;Spengler, Thomas;Vihma, Timo
  • 通讯作者:
    Vihma, Timo
Toward a more realistic representation of surface albedo in NASA CERES-derived surface radiative fluxes
在 NASA CERES 衍生的表面辐射通量中更真实地表示表面反照率
  • DOI:
    10.1525/elementa.2022.00013
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huang, Yiyi;Taylor, Patrick C.;Rose, Fred G.;Rutan, David A.;Shupe, Matthew D.;Webster, Melinda A.;Smith, Madison M.
  • 通讯作者:
    Smith, Madison M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Shupe其他文献

Investigation of the annual cycle of the cloud radiative effect based on CERES and Polarstern observations during MOSAiC
MOSAiC 期间基于 CERES 和 Polarstern 观测的云辐射效应年周期研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Barrientos;H. Deneke;H. Griesche;A. Hünerbein;Andreas Macke;Patric Seifert;Matthew Shupe;Jonas Witthuhn
  • 通讯作者:
    Jonas Witthuhn
Final Report: Enhanced Atmospheric Research at the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)
最终报告:北极气候研究多学科漂流观测站 (MOSAiC) 加强大气研究
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Shupe
  • 通讯作者:
    Matthew Shupe

Matthew Shupe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Shupe', 18)}}的其他基金

Collaborative Research: NSFGEO-NERC: Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit: Measurements along Lagrangian Transects
合作研究:NSFGEO-NERC:能源、云、大气状态和山顶降水的综合表征:沿拉格朗日断面的测量
  • 批准号:
    2137091
  • 财政年份:
    2021
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Continuing Grant
Enhancing the Value of MOSAiC through Coordination and Outreach
通过协调和推广提升 MOSAiC 的价值
  • 批准号:
    1839104
  • 财政年份:
    2019
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Continuing Grant
NNA: NSFGEO-NERC: Collaborative Research: The Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit, Aerosol-Cloud Experiment (ICECAPS-ACE)
NNA:NSFGEO-NERC:合作研究:能源、云、大气状态和峰会降水的综合表征、气溶胶云实验 (ICECAPS-ACE)
  • 批准号:
    1801477
  • 财政年份:
    2018
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing the Roles of Atmospheric Structure and Clouds on the Radiation and Precipitation Budgets at Summit, Greenland
合作研究:描述大气结构和云对格陵兰峰会辐射和降水预算的作用
  • 批准号:
    1314156
  • 财政年份:
    2013
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Standard Grant
Collaborative Reasearch: Integrated Characterization of Energy, Clouds, Atmospheric structure, and Precipitation at Summit (ICECAPS)
合作研究:能源、云、大气结构和峰会降水的综合表征(ICECAPS)
  • 批准号:
    1303879
  • 财政年份:
    2013
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Colorado Airborne Multi-Phase Cloud Study (CAMPS)
合作研究:科罗拉多机载多相云研究 (CAMPS)
  • 批准号:
    0964238
  • 财政年份:
    2010
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: An Integrated Characterization of Energy, Clouds, Atmospheric State, and Precipitation at Summit (ICECAPS)
合作研究:能源、云、大气状态和降水的综合表征(ICECAPS)
  • 批准号:
    0856559
  • 财政年份:
    2009
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Standard Grant
Collaborative Research: IPY: Cloud Properties Across the Arctic Basin from Surface and Satellite Measurements - An Existing Arctic Observing Network
合作研究:IPY:通过地面和卫星测量了解整个北极盆地的云特性 - 现有的北极观测网络
  • 批准号:
    0632187
  • 财政年份:
    2007
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: ADAPT: Machine Learning Thermodynamic Speed Limits for Dynamic Materials
协作研究:EAGER:ADAPT:动态材料的机器学习热力学速度限制
  • 批准号:
    2231470
  • 财政年份:
    2022
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Thermodynamic Modeling of Open Magmatic Systems - Translithosphere Magma Chamber Simulator
合作研究:推进开放岩浆系统的热力学建模 - 跨岩石圈岩浆室模拟器
  • 批准号:
    2151039
  • 财政年份:
    2022
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: ADAPT: Machine Learning Thermodynamic Speed Limits for Dynamic Materials
协作研究:EAGER:ADAPT:动态材料的机器学习热力学速度限制
  • 批准号:
    2231469
  • 财政年份:
    2022
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Thermodynamic Modeling of Open Magmatic Systems - Translithosphere Magma Chamber Simulator
合作研究:推进开放岩浆系统的热力学建模 - 跨岩石圈岩浆室模拟器
  • 批准号:
    2151038
  • 财政年份:
    2022
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamic and Thermodynamic Mechanisms of Heat Extremes in the Northern Hemisphere
合作研究:北半球极端高温的动力和热力学机制
  • 批准号:
    1934383
  • 财政年份:
    2020
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamic and Thermodynamic Mechanisms of Heat Extremes in the Northern Hemisphere
合作研究:北半球极端高温的动力和热力学机制
  • 批准号:
    1934358
  • 财政年份:
    2020
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Impacts of Microphysical, Thermodynamic, and Dynamical Processes on Nocturnal and Oceanic Convective Systems via Analyses from PECAN and HAIC/HIWC
合作研究:通过 PECAN 和 HAIC/HIWC 的分析,微物理、热力学和动力过程对夜间和海洋对流系统的影响
  • 批准号:
    1842094
  • 财政年份:
    2019
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Impacts of Microphysical, Thermodynamic, and Dynamical Processes on Nocturnal and Oceanic Convective Systems via Analyses from PECAN and HAIC/HIWC
合作研究:通过 PECAN 和 HAIC/HIWC 的分析,微物理、热力学和动力过程对夜间和海洋对流系统的影响
  • 批准号:
    1841966
  • 财政年份:
    2019
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Standard Grant
TRIPODS+X:RES: Collaborative Research: Thermodynamic Phases and Configuration Space Topology
TRIPODS X:RES:协作研究:热力学相和构型空间拓扑
  • 批准号:
    1839358
  • 财政年份:
    2018
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Standard Grant
TRIPODS+X:RES: Collaborative Research: Thermodynamic Phases and Configuration Space Topology
TRIPODS X:RES:协作研究:热力学相和构型空间拓扑
  • 批准号:
    1839370
  • 财政年份:
    2018
  • 资助金额:
    $ 159.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了