SPX: Collaborative Research: Ula! - An Integrated Deep Neural Network (DNN) Acceleration Framework with Enhanced Unsupervised Learning Capability

SPX:合作研究:乌拉!

基本信息

  • 批准号:
    1725456
  • 负责人:
  • 金额:
    $ 52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

In light of very recent revolutions of unsupervised learning algorithms (e.g., generative adversarial networks and dual-learning) and the emergence of their applications, three PIs/co-PI from Duke and UCSB form a team to design Ula! - an integrated DNN acceleration framework with enhanced unsupervised learning capability. The project revolutionizes the DNN research by introducing an integrated unsupervised learning computation framework with three vertically-integrated components from the aspects of software (algorithm), hardware (computing), and application (realization). The project echoes the call from the BRAIN Initiative (2013) and the Nanotechnology-Inspired Grand Challenge for Future Computing (2015) from the White House. The research outcomes will benefit both Computational Intelligence (CI) and Computer Architecture (CA) industries at large by introducing a synergy between computing paradigm and artificial intelligence (AI). The corresponding education components  enhance existing curricula and pedagogy by introducing interdisciplinary modules on the software/hardware co-design for AI with creative teaching practices, and give special attentions to women and underrepresented minority groups.The project performs three tasks: (1) At the software level, a generalized hierarchical decision-making (GHDM) system is designed to efficiently execute the state-of-the-art unsupervised learning and reinforcement learning processes with substantially reduced computation cost; (2) At the hardware level, a novel DNN computing paradigm is designed with enhanced unsupervised learning supports, based on the novelties in near data computing, GPU architecture, and FGPA + heterogeneous platforms; (3) At the application level, the usage of Ula! is exploited in scenarios that can greatly benefit from unsupervised learning and reinforcement learning. The developed techniques are also demonstrated and evaluated on three representative computing platforms: GPU, FPGA, and emerging nanoscale computing systems, respectively.
鉴于最近无监督学习算法的革命(例如,生成对抗网络和双重学习)及其应用的出现,来自杜克大学和UCSB的三位pi /co-PI组成了一个团队来设计Ula!-集成深度神经网络加速框架,增强无监督学习能力。该项目通过引入一个集成的无监督学习计算框架,从软件(算法)、硬件(计算)和应用(实现)三个方面垂直集成的组件,彻底改变了深度神经网络的研究。该项目响应了白宫2013年发起的“大脑计划”(BRAIN Initiative)和2015年发起的“纳米技术激发的未来计算大挑战”(Nanotechnology-Inspired Grand Challenge for Future Computing)的号召。研究成果将通过引入计算范式和人工智能(AI)之间的协同作用,使计算智能(CI)和计算机架构(CA)行业受益。相应的教育组成部分通过引入人工智能软件/硬件协同设计的跨学科模块,以创造性的教学实践来加强现有的课程和教学法,并特别关注妇女和代表性不足的少数群体。该项目完成了三个任务:(1)在软件层面,设计了一个广义分层决策(GHDM)系统,以有效地执行最先进的无监督学习和强化学习过程,大大降低了计算成本;(2)在硬件层面,基于近数据计算、GPU架构和FGPA +异构平台的新颖性,设计了一种具有增强无监督学习支持的新型深度神经网络计算范式;(3)在应用程序层面,Ula!在可以从无监督学习和强化学习中获益的场景中被利用。所开发的技术还分别在三个代表性的计算平台上进行了演示和评估:GPU、FPGA和新兴的纳米级计算系统。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MobiEye: An Efficient Cloud-based Video Detection System for Real-Time Mobile Applications
PENNI: Pruned Kernel Sharing for Efficient CNN Inference
  • DOI:
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shiyu Li;Edward Hanson;H. Li;Yiran Chen
  • 通讯作者:
    Shiyu Li;Edward Hanson;H. Li;Yiran Chen
Reshaping Future Computing Systems With Emerging Nonvolatile Memory Technologies
利用新兴非易失性内存技术重塑未来计算系统
  • DOI:
    10.1109/mm.2018.2885588
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Chen, Yiran
  • 通讯作者:
    Chen, Yiran
AdaLearner: An adaptive distributed mobile learning system for neural networks
AdaLearner:神经网络的自适应分布式移动学习系统
Neuromorphic Computing Systems: From CMOS To Emerging Nonvolatile Memory
  • DOI:
    10.2197/ipsjtsldm.12.53
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chaofei Yang;Ximing Qiao;Yiran Chen
  • 通讯作者:
    Chaofei Yang;Ximing Qiao;Yiran Chen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiran Chen其他文献

Coca-Cola in process of materialisation: a new materialist perspective on He Xiangyu’s Cola Project
物化过程中的可口可乐:新唯物主义视角何翔宇的可乐计划
  • DOI:
    10.1080/21500894.2023.2196275
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiran Chen
  • 通讯作者:
    Yiran Chen
Essays on the Economics of Networks
网络经济学论文集
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiran Chen
  • 通讯作者:
    Yiran Chen
Improving Multilevel Writes on Vertical 3-D Cross-Point Resistive Memory
改进垂直 3D 交叉点电阻存储器的多级写入
Shift-Optimized Energy-Efficient Racetrack-Based Main Memory
基于移位优化的节能赛道主存储器
TriZone: A Design of MLC STT-RAM Cache for Combined Performance, Energy, and Reliability Optimizations
TriZone:MLC STT-RAM 缓存设计,可实现性能、能耗和可靠性的综合优化

Yiran Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yiran Chen', 18)}}的其他基金

Conference: 2023 CISE Computer System Research PI Meeting
会议:2023 CISE计算机系统研究PI会议
  • 批准号:
    2341163
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
  • 批准号:
    2328805
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Continuing Grant
Workshop Proposal: Redefining the Future of Computer Architecture from First Principles
研讨会提案:从第一原理重新定义计算机架构的未来
  • 批准号:
    2220601
  • 财政年份:
    2022
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
  • 批准号:
    2120333
  • 财政年份:
    2021
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
AI Institute for Edge Computing Leveraging Next Generation Networks (Athena)
利用下一代网络的人工智能边缘计算研究所 (Athena)
  • 批准号:
    2112562
  • 财政年份:
    2021
  • 资助金额:
    $ 52万
  • 项目类别:
    Cooperative Agreement
EAGER: Distributed Heterogeneous Data Analytics via Federated Learning
EAGER:通过联邦学习进行分布式异构数据分析
  • 批准号:
    2140247
  • 财政年份:
    2021
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Revitalizing EDA from a Machine Learning Perspective
合作研究:SHF:媒介:从机器学习的角度振兴 EDA
  • 批准号:
    2106828
  • 财政年份:
    2021
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: Two-dimensional Synaptic Array for Advanced Hardware Acceleration of Deep Neural Networks
合作研究:用于深度神经网络高级硬件加速的二维突触阵列
  • 批准号:
    1955246
  • 财政年份:
    2020
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Workshop Proposal: Processing-In-Memory (PIM) Technology - Grand Challenges and Applications
研讨会提案:内存处理 (PIM) 技术 - 重大挑战和应用
  • 批准号:
    2027324
  • 财政年份:
    2020
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    1937435
  • 财政年份:
    2019
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant

相似海外基金

SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2408925
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    2412182
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
  • 批准号:
    2318628
  • 财政年份:
    2022
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
  • 批准号:
    2202859
  • 财政年份:
    2022
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    2333009
  • 财政年份:
    2022
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
  • 批准号:
    2132049
  • 财政年份:
    2021
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2113307
  • 财政年份:
    2020
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    1919117
  • 财政年份:
    2019
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    1918987
  • 财政年份:
    2019
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了