Translation Surfaces and Their Applications

平移表面及其应用

基本信息

  • 批准号:
    1738381
  • 负责人:
  • 金额:
    $ 9.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

The primary goal of this project is to advance our understanding of a fundamental mathematical object called a "translation surface." From an elementary perspective, translation surfaces can be viewed as a polygon with a recipe for gluing its edges. For example, gluing opposite sides of a square produces a torus, which is the mathematical name for the shape of a doughnut. Most spectacularly, these polygons quickly lead to deep mathematics at the frontiers of research and they intersect a wide range of fields including algebra, geometry, and dynamical systems. Furthermore, translation surfaces have started to appear in mathematical physics with connections to quantum mechanics. From an educational standpoint, polygons arise in high school geometry and the PI has successfully explained to high school students how to find periodic trajectories of a ball on a rectangular table, using standard reflecting rules, using translation surfaces. The elementary nature of polygons allows undergraduates to meaningfully experiment with them using software, such as Sage, which is open source software that is freely available on the internet. The PI has already developed projects for undergraduates concerning translation surfaces.The goals of this project are threefold. First, the PI will study the geometry of orbit closures of translation surfaces through classification problems. Secondly, the PI will apply his knowledge of the geometry of orbit closures to resolve questions concerning dynamics in moduli space and on translation surfaces. He will approach problems concerning the anomalous behavior of Lyapunov exponents of the Kontsevich-Zorich cocycle through a conjecture he proposes. Finally, he will study the structure of quadratic differentials with higher order poles on finite genus Riemann surfaces, which has applications to mathematical physics.
这个项目的主要目标是促进我们对一个叫做“平移曲面”的基本数学对象的理解。从一个基本的角度来看,平移曲面可以看作是一个多边形,它的边缘被粘合在一起。例如,将一个正方形的相对边粘合在一起,就会产生一个环面,这是甜甜圈形状的数学名称。最引人注目的是,这些多边形迅速导致了研究前沿的深度数学,它们交叉了包括代数、几何和动力系统在内的广泛领域。此外,平移曲面已经开始出现在数学物理中,并与量子力学有关。从教育的角度来看,多边形出现在高中几何中,PI成功地向高中生解释了如何使用标准反射规则,使用平移曲面,在矩形桌上找到球的周期轨迹。多边形的基本性质允许本科生使用软件进行有意义的实验,例如Sage,这是一个在互联网上免费提供的开源软件。PI已经为本科生开发了有关翻译表面的项目。这个项目有三个目标。首先,PI将通过分类问题研究平移面轨道闭包的几何形状。其次,PI将运用他在轨道闭包几何方面的知识来解决模空间和平移曲面上的动力学问题。他将通过他提出的一个猜想来探讨有关kontsevic - zorich循环的Lyapunov指数的异常行为的问题。最后,他将研究有限格黎曼曲面上具有高阶极点的二次微分的结构,这在数学物理上有应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Aulicino其他文献

Affine Manifolds and Zero Lyapunov Exponents in Genus 3
  • DOI:
    10.1007/s00039-015-0339-2
  • 发表时间:
    2015-09-28
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    David Aulicino
  • 通讯作者:
    David Aulicino

David Aulicino的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Aulicino', 18)}}的其他基金

Translation Surfaces and Their Applications
平移表面及其应用
  • 批准号:
    1600360
  • 财政年份:
    2016
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1204414
  • 财政年份:
    2012
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Fellowship Award

相似海外基金

Your Best Face Forward - how cereals regulate their epidermal surfaces.
你的最佳面容 - 谷物如何调节其表皮表面。
  • 批准号:
    2765398
  • 财政年份:
    2022
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Studentship
Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
  • 批准号:
    10378055
  • 财政年份:
    2021
  • 资助金额:
    $ 9.84万
  • 项目类别:
Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
  • 批准号:
    10206869
  • 财政年份:
    2021
  • 资助金额:
    $ 9.84万
  • 项目类别:
RAPID - Impact of Coronaviridae lipid, protein and RNA interaction on copper, zinc, and their derivatives coated personal protective equipment surfaces and viral infectivity
RAPID - 冠状病毒科脂质、蛋白质和 RNA 相互作用对铜、锌及其衍生物涂覆的个人防护装备表面和病毒感染性的影响
  • 批准号:
    2029579
  • 财政年份:
    2020
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Standard Grant
Combinatorial and Tropical Degenerations of del Pezzo Surfaces and Their Moduli
del Pezzo 表面的组合和热带退化及其模量
  • 批准号:
    1954163
  • 财政年份:
    2020
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Continuing Grant
Numerical Analysis and Methods for Fluid Deformable Surfaces and Their Interaction with the Bulk
流体变形表面及其与本体相互作用的数值分析和方法
  • 批准号:
    2011444
  • 财政年份:
    2020
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Continuing Grant
Development of innovative plasma process technologies to realize high-performance and multi-functional material surfaces and their applications
开发创新等离子工艺技术以实现高性能、多功能材料表面及其应用
  • 批准号:
    17H02804
  • 财政年份:
    2017
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Experimental and numerical investigation of the flow process of high-pressure water jets and their interaction with technical component surfaces
高压水射流的流动过程及其与技术部件表面相互作用的实验和数值研究
  • 批准号:
    283813424
  • 财政年份:
    2016
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Research Grants
Study of stability of periodic minimal surfaces and their limits
周期极小曲面的稳定性及其极限研究
  • 批准号:
    16K05134
  • 财政年份:
    2016
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
First-principles study on elementary processes of electron scattering by surfaces and their applications
表面电子散射基本过程的第一性原理研究及其应用
  • 批准号:
    16K05483
  • 财政年份:
    2016
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了