CRII: SCH: Applying Motor Control Theories for Ambulatory Monitoring of 3D Upper-Limb Movement

CRII:SCH:应用运动控制理论进行 3D 上肢运动的动态监测

基本信息

  • 批准号:
    1755687
  • 负责人:
  • 金额:
    $ 17.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Accurate monitoring of three dimensional (3D) upper limb posture and motion in a community setting has been of paramount importance in rehabilitation. This work is aimed at developing a system that can provide an objective assessment of individually-tailored therapeutic treatments. Specifically, in movement disorders with a long recovery time, such as stroke or traumatic brain injury, continuous monitoring of movement using a minimally-invasive sensing has been a goal to support long-term adherence. A wrist-worn inertial sensor has been the most commonly used wearable sensor due to its immediacy, ubiquity, and acceptance for sustained use. However, developing a precise understanding of upper limb movements based on a single wrist-worn device is challenging. Data from these devices tends to drift over time; that is, a small error in the sensor measurements grows rapidly as the data are integrated to estimate the movement. This project aims to establish a system that allows accurate monitoring of upper limb movement using a single wrist-worn inertial sensor by specifically addressing the issue of drift.The proposed effort will advance the state-of-the-art in ambulatory monitoring of upper limb motion by exploiting the unique kinematic properties of voluntary upper limb movements mediated by the human central nervous system (CNS) and the physical properties of the musculoskeletal structure. The project starts from prior knowledge regarding the unique kinematic characteristics of limb motion that would eliminate the need for the second integration and many of the drift errors. This model will provide unique opportunities to develop a novel computational algorithms for precise measurement of upper limb motion and kinematics. This study will address the following scientific challenges: 1) development of mathematical models and computational algorithms to estimate the dynamically changing body direction, 2) establishment of a new machine learning framework to estimate the 3D position trajectory of the sensing unit without double integration by leveraging the motor control theories, and 3) development of a sequential algorithm to estimate the most likely kinematic profiles of limb joints based on the human musculoskeletal properties. The success of this project will lead to a major breakthrough in precise gesture monitoring in the free-living setting, opening a new door leading to previously unexplored datasets and potentially new development of personalized disease management via unobtrusive monitoring of motor functions in movement disorders. This project will also embrace the integration of interdisciplinary research and undergraduate/graduate training among the areas of wearable computing, signal processing, data science, and smart health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在社区环境中,准确监测上肢的三维姿势和运动对康复至关重要。这项工作的目的是开发一个系统,可以提供一个客观的评估个性化的治疗方法。具体来说,对于需要长时间恢复的运动障碍,如中风或创伤性脑损伤,使用微创传感技术对运动进行持续监测已成为支持长期坚持治疗的目标。由于其即时性、普及性和可持续性,腕式惯性传感器已成为最常用的可穿戴传感器。然而,基于单个腕戴设备开发对上肢运动的精确理解是具有挑战性的。来自这些设备的数据往往会随着时间的推移而漂移;也就是说,传感器测量中的一个小误差会随着数据的集成而迅速增长,以估计运动。该项目旨在通过专门解决漂移问题,建立一个能够使用单个腕式惯性传感器精确监测上肢运动的系统。通过利用人类中枢神经系统(CNS)介导的自主上肢运动的独特运动学特性和肌肉骨骼结构的物理特性,提出的努力将推进上肢运动动态监测的最新技术。该项目从关于肢体运动的独特运动学特征的先验知识开始,这将消除对第二次积分和许多漂移误差的需要。该模型将为开发一种新的计算算法提供独特的机会,用于精确测量上肢运动和运动学。本研究将解决以下科学挑战:1)建立数学模型和计算算法来估计动态变化的身体方向;2)利用运动控制理论建立新的机器学习框架来估计传感单元的三维位置轨迹,而不需要双重积分;3)开发一种基于人体肌肉骨骼特性的序列算法来估计肢体关节最可能的运动学轮廓。该项目的成功将导致自由生活环境中精确手势监测的重大突破,打开一扇通往以前未开发的数据集的新大门,并通过对运动障碍中运动功能的不显眼监测,潜在地开发个性化疾病管理的新发展。该项目还将整合跨学科研究和本科生/研究生培训,涵盖可穿戴计算、信号处理、数据科学和智能健康等领域。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimating Upper-Limb Impairment Level in Stroke Survivors Using Wearable Inertial Sensors and a Minimally-Burdensome Motor Task
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sunghoon Lee其他文献

Ultra-thin, ultra-flexible, ultra-conformable electronics for healthcare and biomedical applications
适用于医疗保健和生物医学应用的超薄、超灵活、超一致性电子产品
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robert A. Nawrocki;Sunghoon Lee;Naoji Matsuhisa;Tomoyuki Yokota;and Takao Someya
  • 通讯作者:
    and Takao Someya
A Study on the Cultural and Creative Industry in the COVID-19 Era
COVID-19时代的文化创意产业研究
  • DOI:
    10.17703/jcct.2020.6.4.567
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sunghoon Lee
  • 通讯作者:
    Sunghoon Lee
Enhanced Acoustic Sensitivity of Piezoelectric Sensors with Ultrathin Porous Substrates
超薄多孔基板增强压电传感器的声学灵敏度
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Md Osman Goni Nayeem;Sunghoon Lee;Tomoyuki Yokota;and Takao Someya
  • 通讯作者:
    and Takao Someya
Estimating Clinical Scores From Wearable Sensor Data In Stroke Survivors
  • DOI:
    10.1016/j.apmr.2017.08.202
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Claire Meagher;Stefano Sapienza;Catherine Adans-Dester;Anne O’Brien;Shyamal Patel;Gloria Vergara-Diaz;Danilo Demarchi;Sunghoon Lee;Ann-Marie Hughes;Randie Black-Schaffer;Jane Burridge;Ross Zafonte;Paolo Bonato
  • 通讯作者:
    Paolo Bonato
Interaction interfaces in proteins via the Voronoi diagram of atoms
通过原子 Voronoi 图实现蛋白质中的相互作用界面
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chong;Chung;Youngsong Cho;Donguk Kim;Sunghoon Lee;J. Bhak;Deok
  • 通讯作者:
    Deok

Sunghoon Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sunghoon Lee', 18)}}的其他基金

Student-Author Travel Grant for the International Conferences on Biomedical and Health Informatics and on Wearable and Implantable Body Sensor Networks 2019
2019 年生物医学和健康信息学以及可穿戴和植入式身体传感器网络国际会议学生作者旅费补助金
  • 批准号:
    1933231
  • 财政年份:
    2019
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant

相似国自然基金

基于生物类芬顿的LA/Sch@BB耦合系统去除水产养殖尾水中抗生素的效果与机制研究
  • 批准号:
    42377063
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
具有低聚合收缩和生态防龋双功能的埃洛石纳米管@SCH-79797改性复合树脂的研究
  • 批准号:
    82170950
  • 批准年份:
    2021
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
一类稳态Schödinger-Poisson-Slater方程标准化解的研究
  • 批准号:
    11501137
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
锥中修改的Poisson-Sch积分在无穷远点处的渐近行为及其应用
  • 批准号:
    U1304102
  • 批准年份:
    2013
  • 资助金额:
    30.0 万元
  • 项目类别:
    联合基金项目
酵母中Sch9蛋白激酶信号途径调控衰老的分子机理
  • 批准号:
    30671181
  • 批准年份:
    2006
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目

相似海外基金

Open Access Block Award 2024 - London Sch of Hygiene & Tropic. Medicine
2024 年开放访问区块奖 - 伦敦卫生学院
  • 批准号:
    EP/Z532368/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Research Grant
CRII: SCH: Towards Smart Patient Flow Management: Real-time Inpatient Length of Stay Modeling and Prediction
CRII:SCH:迈向智能患者流程管理:实时住院患者住院时间建模和预测
  • 批准号:
    2246158
  • 财政年份:
    2023
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
  • 批准号:
    10816864
  • 财政年份:
    2023
  • 资助金额:
    $ 17.42万
  • 项目类别:
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306660
  • 财政年份:
    2023
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
  • 批准号:
    2306708
  • 财政年份:
    2023
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
  • 批准号:
    2306790
  • 财政年份:
    2023
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
SCH: Computer Vision Algorithms to Detect Tics In Patients with Tourette Syndrome
SCH:用于检测抽动秽语综合征患者抽动的计算机视觉算法
  • 批准号:
    10817272
  • 财政年份:
    2023
  • 资助金额:
    $ 17.42万
  • 项目类别:
SCH: A Novel Bias-mitigated Multimodal Oxygen Monitor
SCH:一种新型的消除偏差的多模式氧监测仪
  • 批准号:
    10816771
  • 财政年份:
    2023
  • 资助金额:
    $ 17.42万
  • 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
  • 批准号:
    10816667
  • 财政年份:
    2023
  • 资助金额:
    $ 17.42万
  • 项目类别:
SCH: Neonatal Facial Coding for Pain Recognition Monitoring System (PRAMS)
SCH:新生儿面部编码疼痛识别监测系统 (PRAMS)
  • 批准号:
    2205472
  • 财政年份:
    2023
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了